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ABSTRACT

Brain tumors are critical neurological disorders, and early detection is essential for
effective treatment. Traditional diagnostic methods, which rely on manual
interpretation of medical images, are time-consuming, error-prone, and dependent on
clinician expertise. With advancements in artificial intelligence (AI) and deep learning
(DL), there has been significant progress in automating the detection and classification
of brain tumors from medical images. However, a significant challenge remains: the
limited availability of large, annotated datasets. Annotated data is expensive, scarce,
and often subject to privacy concerns, making it difficult to fully leverage deep
learning techniques. To address this issue, self-supervised learning (SSL) has emerged
as a promising solution. SSL enables deep learning models to generate supervisory
signals from unlabeled data, significantly reducing the need for manual annotation.
This is particularly beneficial in medical imaging, where acquiring labeled data can be
costly and time-consuming. SSL methods, such as contrastive learning, rotation
prediction, and jigsaw puzzles, allow models to learn meaningful feature
representations from unlabeled data, which can then be fine-tuned for tasks like tumor
classification. Techniques like contrastive learning (e.g., SimCLR, MoCo, and
BYOL), generative models (e.g., autoencoders and GANs), and clustering-based
approaches (e.g., DeepCluster and SwAV) have shown success in learning from
unlabeled medical images. In addition, SSL facilitates the integration of multiple
imaging modalities, such as MRI, CT, and PET scans. By combining these modalities,
SSL models can leverage complementary information, leading to enhanced tumor
classification accuracy and robustness. Federated learning (FL) combined with SSL
allows for collaborative model training across multiple institutions without sharing
sensitive patient data, thus ensuring privacy. Despite the significant advancements in
SSL for brain tumor classification, challenges remain. These include the need for
small labeled datasets for fine-tuning, domain shifts across imaging modalities,
interpretability issues, and the computational complexity of training deep SSL models.
In conclusion, SSL has the potential to revolutionize brain tumor classification by
reducing the reliance on large annotated datasets. Continued research into SSL
techniques can lead to more accurate and efficient diagnostic tools, improving patient
outcomes through earlier and more precise tumor detection.
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8. Grad-CAM - Gradient-weighted Class Activation Mapping
9. ICCV - IEEE/CVF International Conference on Computer Vision
10. MICCAI - Medical Image Computing and Computer-Assisted Intervention
11. MoCo - Momentum Contrast
12. MRI - Magnetic Resonance Imaging
13. PET - Positron Emission Tomography
14. RSNA - Radiological Society of North America
15. SimCLR - Simple Contrastive Learning of Representations
16. SSL - Self-Supervised Learning
17. SwAV - Swapping Assignments between Views
18. VAE - Variational Autoencoder
19. XAI - Explainable AI

1. Introduction
Brain tumors are one of the leading causes of death and disability worldwide, representing a
critical challenge in the field of neuro-oncology. Early and accurate diagnosis is crucial for
effective treatment planning, prognosis prediction, and decision-making regarding surgical
interventions or radiotherapy. Tumor classification plays a pivotal role in determining the
appropriate course of treatment, as different tumor types and grades have vastly different
clinical implications. Historically, the diagnosis and classification of brain tumors have relied
heavily on the expertise of clinicians who manually analyze medical imaging data, such as
magnetic resonance imaging (MRI), computed tomography (CT), and positron emission
tomography (PET) scans. These imaging modalities offer detailed information about the
tumor’s size, shape, location, and tissue characteristics, which can provide invaluable insights
into diagnosis and treatment (Ferguson et al., 2020). However, manual interpretation of
medical images is highly dependent on the expertise and experience of the radiologist and is
subject to inter-observer variability. Moreover, the increasing complexity and volume of
medical imaging data present significant challenges in terms of efficiency, accuracy, and time
consumption. To overcome these limitations, there has been a surge of interest in developing
automated systems that leverage artificial intelligence (AI) to analyze medical images. These
systems promise to significantly improve diagnostic accuracy and reduce the burden on
clinicians, leading to faster and more reliable brain tumor classification. Deep learning (DL)
techniques, particularly convolutional neural networks (CNNs), have emerged as the
dominant approach for automating the analysis of medical images, including the
classification of brain tumors (Rasool & Bhat, 2024). CNNs are particularly effective in
learning hierarchical features from raw pixel data and have demonstrated state-of-the-art
performance in tasks such as tumor detection and segmentation. Nevertheless, one of the
primary challenges faced by supervised deep learning models in medical imaging is the need
for large labeled datasets. In the case of brain tumor classification, acquiring large-scale
annotated datasets is both time-consuming and costly, as it requires the expertise of medical
professionals to manually label the images. Furthermore, issues related to patient privacy and
data-sharing restrictions complicate the availability of diverse and representative datasets
(Bai et al., 2020). This is where self-supervised learning (SSL) has the potential to make a
transformative impact. SSL is a type of machine learning where the model learns from
unlabeled data by generating its own supervisory signals. Unlike traditional supervised
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learning, which requires labeled data for training, SSL allows for the development of models
that can leverage vast amounts of unlabeled data, which is much more readily available. In
SSL, the model is trained on pretext tasks—tasks that do not require labeled data but instead
generate pseudo-labels from the data itself. Once trained on these tasks, the model can be
fine-tuned on a smaller labeled dataset to perform specific downstream tasks, such as tumor
classification (Chen et al., 2020).
The ability of SSL to work with large amounts of unlabeled medical data is particularly
valuable in the field of brain tumor classification, where labeled data is often scarce. Medical
image datasets are often fragmented, and access to data is typically restricted due to privacy
concerns. In such scenarios, SSL can help overcome the limitation of small annotated
datasets by learning useful feature representations from unlabeled data, which can then be
fine-tuned for downstream tasks (He et al., 2020). Furthermore, SSL models tend to exhibit
superior generalization capabilities across different datasets and imaging modalities, making
them highly applicable in clinical settings, where diverse patient populations and different
types of imaging equipment are prevalent. Several SSL approaches have been explored in the
context of brain tumor classification, with promising results. For instance, contrastive
learning-based methods, such as SimCLR (Simple Contrastive Learning of Representations),
have been successfully applied to medical image analysis. These methods work by bringing
similar images closer in the feature space and pushing dissimilar images apart, thus learning
discriminative features that can be used for classification. Other approaches, such as
generative adversarial networks (GANs) and autoencoders, have been employed to generate
synthetic medical images to augment training datasets and improve model performance in
data-scarce scenarios (Goodfellow et al., 2014). Clustering-based techniques like
DeepCluster and SwAV (Swapping Assignments between Views) have also been explored as
ways to group similar medical images and learn useful representations for downstream tasks
(Caron et al., 2020). Despite the impressive progress in SSL-based brain tumor classification,
several challenges remain. One of the primary obstacles is the domain shift between different
imaging modalities, such as MRI, CT, and PET scans. These modalities vary significantly in
terms of the data they provide, and a model trained on one modality may not generalize well
to another. Moreover, the interpretability of SSL models remains an ongoing challenge, as the
decision-making process of deep learning models is often opaque. This lack of transparency
can hinder the acceptance and adoption of SSL models in clinical practice, where
interpretability is crucial for clinicians to trust and act on the model’s predictions (Abhisheka
et al., 2024). In addition to these challenges, the integration of SSL with emerging techniques,
such as multimodal learning and federated learning, presents new opportunities and avenues
for future research. Multimodal SSL approaches, which combine data from different imaging
modalities like MRI, CT, and PET, hold the potential to provide a more comprehensive
understanding of brain tumors. These approaches can improve classification accuracy by
leveraging complementary information from different imaging sources (Yang et al., 2022).
Federated SSL, which allows for the training of models across multiple institutions while
keeping the data decentralized and private, is another promising area of research that could
enable collaborative AI development without compromising patient privacy (Li et al., 2020).
This review provides a comprehensive overview of self-supervised learning approaches for
brain tumor classification using medical images. We examine various SSL techniques, such
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as contrastive learning, generative methods, and clustering-based approaches, and highlight
their applications in brain tumor classification. We also discuss the challenges faced by SSL
models, including data scarcity, domain shifts, and model interpretability, and suggest
potential future directions to address these challenges. Ultimately, this review aims to provide
a deeper understanding of SSL's potential to revolutionize brain tumor diagnosis and
treatment, paving the way for more accurate, efficient, and privacy-preserving AI solutions in
medical imaging.
2. Self-Supervised Learning: An Overview
Self-supervised learning is a subset of unsupervised learning that enables models to learn
useful feature representations from unlabeled data by solving pretext tasks (self-generated
supervisory signals). Once trained, the model can be fine-tuned with a smaller labeled dataset
for downstream tasks like tumor classification.
2.1. Key Concepts in Self-Supervised Learning
Self-supervised learning (SSL) has emerged as a powerful method in the field of machine
learning, especially in scenarios where labeled data is scarce or difficult to acquire. It has
shown significant promise in various domains, including medical image analysis, where
labeled datasets are often limited due to the high costs and expertise required for annotation.
In this section, we delve into the key concepts of SSL, highlighting its mechanisms,
applications in brain tumor classification, and the challenges it aims to address in the medical
imaging space. (Rani et al,2023).
2.1.1. Definition and Basic Principles of Self-Supervised Learning
Self-supervised learning is a subset of unsupervised learning that generates its own
supervisory signals (pseudo-labels) from the input data. Unlike supervised learning, where
labeled data is required for training, SSL learns from unlabeled data by constructing a pretext
task,a task that does not require labels. The model is tasked with solving these pretext tasks to
learn representations of the data that can later be fine-tuned for a specific downstream task,
such as brain tumor classification.
In SSL, a model is trained on a pretext task designed to encourage it to extract useful features
from the input data. Once the model learns meaningful features, it can be fine-tuned using a
smaller, labeled dataset for a specific task like classification or segmentation (He et al., 2020).
This process allows SSL to exploit large volumes of unlabeled data, which is especially
important in domains like medical imaging, where obtaining large labeled datasets is often
infeasible.
2.1.2. Pretext Tasks in Self-Supervised Learning
Pretext tasks are a critical component of self-supervised learning, as they provide the
supervisory signal for training the model. These tasks are carefully designed so that the
model is forced to learn useful representations of the data without direct supervision. Several
pretext tasks have been proposed for medical image analysis, and these can be broadly
categorized into a few types:
2.1.2.1. Contrastive Learning
One of the most widely used pretext tasks in SSL is contrastive learning. In contrastive
learning, the goal is to learn representations that bring similar data points closer in the feature
space while pushing dissimilar data points apart. This is typically achieved by generating
positive and negative pairs of images. The most popular contrastive learning framework is
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SimCLR (Chen et al., 2020), where augmented views of the same image are considered as
positive pairs, while images from different classes are treated as negative pairs. This
approach has been successfully applied to various domains, including brain tumor
classification, by learning discriminative features that can be used for downstream
classification tasks.
2.1.2.2. Generative Models
Another popular pretext task involves using generative models, such as autoencoders and
generative adversarial networks (GANs). In these models, the objective is to reconstruct the
input image from a compressed, latent representation. Autoencoders (Motamednia et al.,
2025) for instance, are trained to minimize the difference between the original input and the
reconstructed output. This forces the model to learn compact, meaningful representations of
the data, which can then be fine-tuned for classification tasks. GANs (Ren et al., 2021) also
provide a framework for learning features in a self-supervised manner by generating synthetic
images that mimic real medical images, thus augmenting the training data and improving
classification performance.

2.1.2.3. Clustering-Based Methods
Clustering-based pretext tasks, such as DeepCluster (Caron et al., 2020) and SwAV (Caron et
al., 2020), leverage unsupervised clustering algorithms to learn representations. In these
methods, the model assigns data points to clusters based on their similarities. By learning to
group similar images together, the model can capture the underlying structure of the data and
generate useful feature representations for downstream tasks. This approach has shown
promise in medical imaging, where the goal is to identify clusters of brain tumor images that
share similar characteristics.
2.2. Advantages of SSL in Medical Imaging

Self-supervised learning offers several advantages over traditional supervised learning
models, especially in the context of brain tumor classification using medical images. These
advantages include:
2.2.1. Reducing Dependency on Labeled Data
One of the key challenges in medical image analysis is the scarcity of labeled datasets. The
process of labeling medical images requires expert knowledge, which is both time-consuming
and expensive. SSL significantly reduces the need for labeled data by leveraging large
amounts of unlabeled data to pretrain models. This is particularly useful in the context of
brain tumor classification, where labeled datasets are often limited due to the expertise
required for annotation (Bai et al., 2020).
2.2.2. Enhancing Generalization and Transfer Learning
Self-supervised learning models have shown better generalization capabilities compared to
supervised models. Since SSL models learn representations that capture the underlying
structure of the data, they can be more robust to variations in data, such as domain shifts
across different imaging modalities (MRI, CT, PET) or variations in patient demographics.
This generalizability is crucial in medical applications, where models need to perform
consistently across diverse datasets (He et al., 2020).
2.2.3. Improved Performance with Limited Data
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In brain tumor classification, SSL has been shown to improve the performance of models in
scenarios where labeled data is scarce. By pretraining the model on a large corpus of
unlabeled medical images, SSL allows the model to learn robust features that can be
fine-tuned on a smaller labeled dataset. This is particularly beneficial when the annotated
medical datasets are limited, as SSL helps overcome the data scarcity challenge (Chen et al.,
2020).
2.2.4. Multimodal Learning and Federated Learning
SSL also facilitates multimodal learning, where models are trained on data from multiple
imaging modalities. Brain tumors can be detected and classified using various imaging
techniques such as MRI, CT, and PET, and each modality provides complementary
information about the tumor. SSL can be applied to multimodal data to learn joint
representations, thereby improving the accuracy of brain tumor classification (Yang et al.,
2022). Additionally, SSL can be integrated with federated learning, a privacy-preserving
machine learning technique, to allow institutions to collaborate on training models without
sharing sensitive patient data.

SSL Technique Description Key Advantages
Key Applications in
Brain Tumor
Classification

Contrastive Learning

Learns
representations by
contrasting similar
vs. dissimilar pairs.

Efficient feature
extraction from
unlabeled data.

Glioma,
meningioma,
pituitary tumor
classification using
MRI.

Generative Models
(GANs)

Uses generative
adversarial networks
to create realistic
images.

Useful in data-scarce
scenarios, enhances
generalization.

Generating synthetic
tumor images for
improved
classification.

Clustering-Based
SSL

Groups similar
images into clusters,
learning feature
representations.

Reduces reliance on
explicit labels,
unsupervised.

Tumor-specific
feature learning
across different MRI
scans.

Predictive Tasks
Tasks like rotation
prediction, jigsaw
puzzles.

Simple tasks for
learning
representations
without labeled data.

Classification of
tumor types using
MRI slices.

Table 1: Overview of Self-Supervised Learning Techniques for Medical Image Analysis
3. SSLTechniques in Brain Tumor Classification
Self-supervised learning (SSL) has emerged as a pivotal technique for leveraging unlabeled
data to train deep learning models, especially in domains like medical imaging, where labeled
datasets are limited and costly to acquire. In the field of brain tumor classification, SSL
methods enable models to learn robust feature representations without requiring a large
amount of labeled data, which is crucial for handling the challenges associated with medical
imaging. In this section, we delve into the various SSL techniques that have been successfully
employed for brain tumor classification using medical images. These techniques include
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contrastive learning, generative models, and clustering-based methods, each playing a critical
role in improving classification performance in the medical domain.
3.1. Contrastive Learning
Contrastive learning is one of the most widely used techniques in self-supervised learning,
particularly for tasks that involve learning feature representations from unlabeled data. In
contrastive learning, the model learns by comparing different data samples and determining
whether they are similar or dissimilar. The aim is to learn a representation where similar
samples are close together in the latent space, while dissimilar samples are far apart. This
approach has gained significant traction in medical imaging tasks, including brain tumor
classification, due to its effectiveness in learning discriminative features without the need for
labeled data.

3.1.1. SimCLR (Simple Contrastive Learning of Representations)

SimCLR is a powerful and widely used contrastive learning framework that encourages the
model to learn representations by maximizing agreement between positive pairs and
minimizing it for negative pairs (Chen et al., 2020). A positive pair consists of two
augmented versions of the same image, while a negative pair consists of different images. By
applying this method to MRI scans, SimCLR has demonstrated the ability to generate
meaningful representations of brain tumor images that can be fine-tuned for classification
tasks.
In the context of brain tumor classification, SimCLR can be used to pretrain a model on a
large set of unlabeled MRI images. The model then learns to identify features that are
invariant to augmentations such as rotations, translations, and brightness changes, while
discriminating between different tumor types. After this pretraining, a small labeled dataset
can be used to fine-tune the model for tumor classification.

3.1.2. MoCo (Momentum Contrast)

MoCo is another contrastive learning method that uses a momentum-based encoder to
improve the quality of feature representations (He et al., 2020). Unlike SimCLR, which uses
a large batch of data to generate negative samples, MoCo constructs a dynamic dictionary of
negative samples through a momentum-based encoder. This enables the model to learn from
a much larger set of negative samples, improving the discriminative power of the learned
features. In medical imaging, MoCo has been used for tasks like brain tumor segmentation
and classification, where it effectively learns a robust representation of tumor images from
unlabeled data. MoCo's ability to maintain a high-quality negative sample dictionary is
particularly useful when working with datasets containing various tumor types, as it enables
the model to learn a more generalizable feature space that can better handle the variability
present in medical images (Chen et al., 2020).

3.1.3. BYOL (Bootstrap Your Own Latent)

BYOL is a contrastive learning approach that removes the need for negative samples
altogether (Grill et al., 2020). Instead of comparing positive and negative pairs, BYOL
focuses on maximizing the similarity between two augmented views of the same image. The
model uses a target network to generate one of the views and compares it to the other view
generated by the online network. This technique has proven highly effective for training deep



5635

learning models in scenarios with limited labeled data, as it can learn meaningful
representations even without negative samples.
For brain tumor classification, BYOL has shown potential in learning representations of
tumor images from a single modality (e.g., MRI scans) without the need for negative samples
or a large dataset. This is especially beneficial in medical imaging, where obtaining large
labeled datasets can be impractical.
3.2. Generative Models
Generative models are another class of SSL techniques that have been widely applied in
medical imaging, including brain tumor classification. These models learn to generate new
data samples that are similar to the training data by modeling the underlying data distribution.
Unlike discriminative models, which focus on distinguishing between classes, generative
models focus on learning the underlying structure of the data.

3.2.1. Autoencoders

Autoencoders are neural networks trained to compress input data into a lower-dimensional
latent representation and then reconstruct the input from this compressed representation. The
encoder network learns to capture the most salient features of the data, while the decoder
reconstructs the data from these features (Mienye and Swart,2025). In the context of brain
tumor classification, autoencoders can be used to learn compact representations of tumor
images. These representations can then be fine-tuned for classification tasks using a smaller
labeled dataset. Autoencoders are particularly useful for medical image analysis because they
can handle noisy and incomplete data. By training the autoencoder on a large set of unlabeled
medical images, it can learn robust features that capture key characteristics of tumors, such as
their shape, size, and location. Once pretrained, the model can be fine-tuned to classify brain
tumors more effectively, even with limited labeled data (Jiang et al.,(2023).

3.2.2. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a class of generative models composed of two
neural networks: the generator and the discriminator (Wenzel, M. 2023). The generator
creates synthetic data, while the discriminator evaluates the quality of the generated data. The
generator and discriminator compete in a minimax game, where the generator aims to
produce realistic samples, and the discriminator tries to distinguish between real and fake
data. Over time, the generator learns to produce highly realistic data that mimics the
distribution of the original dataset.
In brain tumor classification, GANs can be used to generate synthetic tumor images that can
augment a small labeled dataset. This is particularly valuable when annotated medical images
are scarce. Additionally, GANs can be used to improve the robustness of classification
models by generating a variety of tumor images with different characteristics, such as size
and shape, which can help the model generalize better to new, unseen data (Goodfellow et al.,
2014).

3.2.3. Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) are a probabilistic version of autoencoders that learn a
distribution over the latent space, allowing them to generate new samples by sampling from
the learned distribution (Connor et al.,2021). VAEs have been used in medical imaging for
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generating realistic synthetic images, as well as for anomaly detection tasks, such as
identifying tumors.
In the context of brain tumor classification, VAEs can generate synthetic MRI scans that
closely resemble real images, providing additional training data for classification models.
VAEs can also be used to learn compact, interpretable representations of brain tumor images,
which can be used for downstream classification tasks.
3.3. Clustering-Based Methods
Clustering-based methods are another category of self-supervised learning techniques that
have been applied to medical image analysis. These methods group similar data points
together and use these clusters as pseudo-labels for downstream tasks. Clustering methods
can be particularly useful when labeled data is limited, as they can help organize unlabeled
data into meaningful groups.

3.3.1. Deep Cluster

Deep Cluster is a clustering-based SSL method that uses deep learning for unsupervised
clustering of data (Wei et al., 2024). In this method, the model is first pretrained using
clustering, and the resulting cluster assignments are used as pseudo-labels for downstream
tasks. Deep Cluster has been used successfully in medical image analysis, including brain
tumor classification, where it helps the model learn to cluster images with similar tumor
characteristics.
The main advantage of Deep Cluster is that it does not require labeled data for clustering;
instead, it uses unsupervised clustering techniques to generate pseudo-labels from the data.
These labels can then be used to fine-tune the model for classification tasks, improving the
performance of brain tumor classification models with limited labeled data.

3.3.2. SwAV (Swapping Assignments between Views)

SwAV is a recent clustering-based SSL method that aims to solve the limitations of
traditional clustering by swapping cluster assignments between views of the same image
(Caron et al., 2020). This technique allows the model to learn better feature representations
by ensuring that different augmentations of the same image are assigned to the same cluster.
SwAV has shown promising results in medical imaging, including brain tumor classification,
by improving the quality of learned features and making the model more robust to different
imaging modalities.
By clustering similar brain tumor images together, SwAV can generate high-quality features
that are useful for classification tasks, even with limited labeled data. This is particularly
useful in medical imaging, where obtaining large labeled datasets is often impractical.
4. Applications of SSL in Brain Tumor Classification
Self-supervised learning (SSL) has gained significant attention in the medical imaging field,
particularly for tasks such as brain tumor classification. Due to the inherent challenges in
obtaining large, labeled datasets in the medical domain, SSL offers an effective solution by
leveraging vast amounts of unlabeled data. By learning useful feature representations from
these unlabeled datasets, SSL models can be fine-tuned on smaller labeled datasets for
downstream tasks, such as tumor classification. This section explores the key applications of
SSL in brain tumor classification using medical images, emphasizing its potential to improve
diagnosis and treatment planning in neuro-oncology.
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Model/Approach Dataset
Used

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) AUC (%)

SimCLR
(Contrastive
Learning)

BraTS
2020 92.5 93.0 91.5 0.98

BYOL (Bootstrap
Your Own
Latent)

BraTS
2019 90.3 91.5 89.2 0.96

GANs
(Generative
Models)

RSNA
Brain
Tumor
Dataset

91.0 90.8 91.2 0.97

DeepCluster
(Clustering)

MICCAI
Brain
Tumor
Dataset

88.4 89.2 88.1 0.94

Autoencoders

Kaggle
Brain
Tumor
Dataset

89.7 90.0 89.4 0.96

Table 2: Performance Comparison of SSL Models in Brain Tumor Classification
4.1. Improved Brain Tumor Classification from MRI Scans
Magnetic resonance imaging (MRI) is the most commonly used imaging modality for
diagnosing brain tumors. However, manually analyzing MRI scans for tumor detection and
classification is time-consuming and prone to human error. Traditional deep learning models
used in medical image analysis, such as convolutional neural networks (CNNs), often rely on
large annotated datasets for training. In contrast, SSL models can utilize unlabeled MRI data,
significantly reducing the need for manual labeling efforts.
4.1.1. SimCLR for MRI-Based Tumor Classification
One of the most prominent SSL methods for brain tumor classification in MRI images is
SimCLR (Simple Contrastive Learning of Representations). This contrastive
learning-based SSL technique has shown promise in improving the quality of feature
representations for MRI scans. In SimCLR, a model is trained to learn representations by
maximizing the similarity between positive pairs (two augmentations of the same image) and
minimizing the similarity between negative pairs (different images) (Chen et al., 2020). By
using large amounts of unlabeled MRI data, the model learns to distinguish between various
tumor types, such as gliomas, meningiomas, and pituitary tumors.
A study by Zhang et al. (2020) demonstrated that a model pre-trained with SimCLR on a
large set of unlabeled MRI scans achieved comparable accuracy to a model trained on fully
labeled data for glioma classification. This method not only improved classification accuracy
but also reduced the number of labeled samples required for training, which is particularly
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beneficial in the medical field, where labeled data can be scarce and expensive to acquire
(Figure 1).

Figure 1: Representative MRI scans illustrating diverse brain conditions and their
radiological features. From left to right: (1) Glioma – a malignant brain tumor characterized
by an irregular mass; (2) Meningioma: a typically well-circumscribed, extra-axial tumor; (3)
Pituitary tumor :a lesion within the pituitary gland, potentially affecting hormonal balance;
and (4) Non-tumor :a normal brain scan devoid of pathological abnormalities. These images
exemplify distinct radiological features crucial for the differential diagnosis of brain tumors.
4.1.2. BYOL for MRI Tumor Classification
Another successful SSL approach applied to brain tumor classification is BYOL (Bootstrap
Your Own Latent), which removes the need for negative samples in contrastive learning
(Grill et al., 2020). Instead of comparing positive and negative pairs, BYOL learns
representations by maximizing the similarity between two augmented versions of the same
image, without requiring a negative sample for comparison. This method has been shown to
perform well in medical image tasks with limited labeled data, such as MRI-based brain
tumor classification. Studies by (Ranjan et al.,2021) demonstrated that BYOL could improve
the detection of gliomas and other brain tumor types from MRI scans, achieving high
accuracy even when only a small labeled dataset was available.
4.2. Multi-Modality Tumor Classification
Brain tumors can be characterized differently across various imaging modalities, such as MRI,
computed tomography (CT), and positron emission tomography (PET). Each modality
provides complementary information about the tumor's location, size, and type. Combining
multiple modalities improves classification accuracy by leveraging the strengths of each
imaging technique. SSL methods have shown significant promise in multi-modal brain tumor
classification, enabling models to learn robust representations from various imaging
modalities without the need for large labeled datasets.
4.2.1. Multi-Modality SSL for Tumor Classification
Combining MRI, CT, and PET scans using SSL techniques is an emerging area of research in
brain tumor classification. The idea is to pretrain a model on individual modalities using SSL
and then combine the learned representations to improve classification performance. Studies
have shown that training a model on MRI and CT scans together can improve tumor
detection and classification, particularly in complex tumor cases (Zhu et al., 2021).
One such approach involves using contrastive learning to pretrain models on multi-modal
data, as shown by Tian et al. (2021). The authors used a multi-modality framework, where
representations learned from each modality (MRI, CT, and PET) were fused to classify
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gliomas. The results showed that incorporating multiple imaging modalities improved the
model's accuracy compared to using a single modality, as each modality provides unique
information about the tumor. As depicted in Figure 2, incorporating multiple imaging
modalities is a common approach in self-supervised learning for brain tumor classification,
based on the premise that each modality provides unique information about the tumor and
that combining them can improve model accuracy.

Figure 2: Illustrates the key stages of a multi-modal self-supervised learning (SSL) approach
for brain tumor classification using MRI, CT, and potentially PET scans. The process begins
with data pre-processing, followed by self-supervised neural network training on individual
imaging modalities. Feature extraction is then performed using contrastive learning
techniques such as SimCLR and MoCo from the pre-trained networks. The extracted features
are subsequently fused and used as input for final classification via convolutional neural
networks (CNNs). This pipeline highlights how integrating information from multiple
imaging modalities enhances the learning process, ultimately improving diagnostic accuracy.

4.2.2. SwAV for Multi-Modality Medical Imaging
SwAV (Swapping Assignments between Views) is another SSL technique that can be applied
to multi-modal brain tumor classification. SwAV allows different augmentations or views of
the same image to be assigned to the same cluster without needing explicit contrastive
learning. This method has been shown to work well with multi-modal data, as it can handle
the variability between different imaging techniques. In brain tumor classification, SwAV
could be used to learn representations from both MRI and PET scans, improving the model's
ability to differentiate between tumor types (Caron et al., 2020).
4.3. Federated Self-Supervised Learning for Brain Tumor Classification
Federated learning (FL) is a decentralized approach where models are trained across multiple
institutions or devices without the need to share patient data. Combining federated learning
with SSL holds significant promise for the medical imaging field, especially in brain tumor
classification. Since patient data is highly sensitive and subject to privacy regulations,
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federated SSL allows hospitals and medical centers to collaborate on training deep learning
models without violating data privacy.
4.3.1. Federated SSL for Tumor Classification in Distributed Environments
Federated SSL enables institutions to collaboratively train models on distributed datasets of
brain tumor images, reducing the need for centralized data collection. This approach is
particularly beneficial for medical imaging, where data privacy concerns often limit the
sharing of medical images across institutions. Studies have demonstrated that federated SSL
models can achieve high performance in brain tumor classification, even when each
participating institution has access to a limited amount of data. By aggregating model updates
from different institutions without sharing raw data, federated SSL models can learn
generalized representations that perform well on unseen data (Sheller et al., 2020).
In a study by Li et al. (2021), federated learning combined with SSL techniques was used to
classify gliomas from MRI scans across multiple medical institutions. The results showed
that the federated SSL model outperformed traditional methods in terms of accuracy and
robustness, demonstrating the potential of this approach for privacy-preserving brain tumor
classification.
4.4. Tumor Segmentation Using Self-Supervised Learning
In addition to tumor classification, SSL can also be applied to tumor segmentation tasks.
Tumor segmentation involves identifying the exact boundaries of a tumor within an image,
which is crucial for treatment planning, particularly in radiotherapy. SSL methods such as
autoencoders and GANs (Generative Adversarial Networks) have been successfully used
for segmentation tasks in medical images, including brain tumor segmentation.

4.4.1. Autoencoders for Tumor Segmentation
Autoencoders have been widely used for segmenting brain tumors from MRI scans. These
networks are trained to reconstruct the input image from a lower-dimensional latent space,
learning to capture key features such as tumor shape and size. By applying SSL to
autoencoders, models can be pretrained on unlabeled MRI scans, learning features that are
useful for segmenting tumors in subsequent supervised tasks(Badža & Barjaktarović,2021).
A study by Hussein et al. (2020) applied autoencoders to segment brain tumors in MRI
images. The model was first pretrained using SSL on unlabeled MRI scans and then
fine-tuned on a small labeled dataset for segmentation. The authors found that SSL-based
autoencoders improved segmentation performance, particularly in regions of the brain with
complex tumor shapes.
4.4.2. GANs for Tumor Segmentation
Generative Adversarial Networks (GANs) have been applied to medical image segmentation
by generating realistic synthetic tumor images and using these images to augment training
data. This approach is particularly useful in medical imaging, where labeled data can be
scarce. By generating synthetic images with different tumor characteristics, GANs can help
improve the generalization ability of models trained for tumor segmentation. A study by
Zhang et al. (2020) applied GANs for brain tumor segmentation and found that the use of
synthetic tumor images significantly improved segmentation accuracy. (FIGURE 3)
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FIGURE 3: Illustrates a Generative Adversarial Network (GAN) pipeline designed to
augment brain tumor MRI data, addressing the challenge of limited labeled datasets. The
process begins with the random selection of MRI scans from a limited-source dataset (e.g.,
Patient A, Patient B). For each selected scan, regions of interest (ROIs) are extracted,
including the lesion area (tumor region) and surrounding texture (non-tumor tissue). These
ROIs are then assigned virtual semantic labels based on their tissue type. The GAN model
(TumorGAN) processes these labeled ROIs to generate realistic synthetic tumor images,
enhancing data availability for improved model training and segmentation accuracy.
4.5. Enhancing Model Interpretability with SSL
A critical challenge in the deployment of deep learning models in clinical settings is their
lack of interpretability. In medical image analysis, it is essential that healthcare professionals
can trust the model's decisions. SSL can aid in improving model interpretability by learning
features that are more representative of tumor biology rather than relying on arbitrary learned
features.
4.5.1. Explainable AI in SSL for Brain Tumor Classification
Recent advances in explainable AI (XAI) have focused on making deep learning models
more transparent, allowing clinicians to understand the reasoning behind model predictions.
By incorporating SSL, models can learn representations that align more closely with
human-understandable features, such as tumor size, shape, and location, improving the
interpretability of brain tumor classification models (Adeniran, Onebunne, & William 2024).
5. Challenges and Future Directions
Self-supervised learning (SSL) has revolutionized the application of artificial intelligence (AI)
and deep learning in the medical imaging domain, especially for tasks like brain tumor
classification. By enabling models to learn useful feature representations from large amounts
of unlabeled data, SSL reduces the reliance on annotated datasets, which are often scarce in
medical fields. However, while SSL has shown significant promise in brain tumor
classification, several challenges remain. These challenges must be addressed to fully unlock
SSL's potential and pave the way for its widespread adoption in clinical settings. This section
discusses these challenges and the future directions of SSL in brain tumor classification,
offering insights into how ongoing research can overcome limitations and improve its
practical applicability.
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5.1. Challenges in Self-Supervised Learning for Brain Tumor Classification
5.1.1. Limited Availability of Labeled Data for Fine-Tuning
While SSL can learn from vast amounts of unlabeled data, the performance of SSL models is
ultimately dependent on the availability of a small labeled dataset for fine-tuning. In the
context of medical imaging, acquiring labeled data is often a time-consuming and costly
process that requires expert radiologists or pathologists to annotate the data. Moreover, the
subjectivity and variability in human annotations can lead to inconsistencies, which can affect
the training process. In brain tumor classification, despite the existence of large-scale,
publicly available datasets (e.g., BRATS), the number of labeled images is still limited,
particularly for rarer tumor types (Sahoo et al., 2020). For SSL methods to be effective, they
must learn robust features from unlabeled data that can generalize well to small labeled
datasets, but this is not always guaranteed. The challenge, therefore, lies in ensuring that the
learned representations can be fine-tuned effectively with minimal labeled data.
5.1.2. Domain Shift Between Different Imaging Modalities
Another significant challenge in applying SSL to brain tumor classification is the domain
shift between different medical imaging modalities. MRI, CT, and PET scans each have
unique characteristics that may affect the appearance of tumors, such as differences in image
resolution, contrast, and noise levels. These variations can hinder the model’s ability to
generalize across modalities and complicate the process of feature extraction using SSL
(Illimoottil & Ginat, 2023). Although multi-modal SSL approaches have been proposed,
ensuring that the learned representations from one modality are transferable to others remains
a significant challenge. A study by Wang et al. (2020) highlighted the difficulties in
achieving modality-invariant features when training models on heterogeneous data,
underlining the need for more robust SSL methods capable of handling domain shifts.
5.1.3. Interpretability of Self-Supervised Learning Models
One of the major hurdles in deploying deep learning models in clinical settings is the lack of
interpretability. Physicians and radiologists need to understand the reasoning behind the
model’s decisions, especially when making critical diagnoses related to brain tumors. SSL
models, particularly deep networks, are often considered “black boxes,” making it difficult to
understand how features are learned and which parts of the image are important for
classification.
Recent advancements in explainable AI (XAI) have sought to address this challenge, but SSL
models still struggle with providing clear and interpretable results. Techniques like
Grad-CAM (Li et al., 2023) have been used to interpret CNN-based models, but their
application to SSL models remains limited. Improving the interpretability of SSL models in
brain tumor classification is critical for clinical adoption, as doctors need to trust the model’s
recommendations.
5.1.4. Scalability and Computational Resources
Training SSL models, especially deep architectures like convolutional neural networks
(CNNs) or transformer-based models, requires significant computational resources. While
SSL reduces the need for labeled data, it often involves complex pretext tasks that demand
substantial computing power, memory, and time. Additionally, fine-tuning SSL models on
smaller labeled datasets adds another layer of computational complexity (Radford et al.,
2021).
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In the medical imaging context, large-scale datasets, high-dimensional images, and
multi-modal inputs can lead to increased memory usage and training times. The need for
high-performance GPUs or distributed computing systems may be a barrier for smaller
institutions or healthcare providers with limited resources, limiting the widespread adoption
of SSL in clinical practice.
5.1.5. Overfitting and Generalization to Unseen Data
Despite its potential, SSL models are prone to overfitting, especially when trained on small
labeled datasets for downstream tasks like tumor classification. The problem arises when the
model learns overly specific features during pretraining, which may not generalize well to
new or unseen datasets. This can result in poor performance in real-world clinical settings,
where the model is exposed to new types of data that may differ from the pretraining set.
SSL models rely heavily on the pretext tasks (e.g., contrastive learning, rotation prediction) to
learn feature representations, but these tasks may not always capture tumor-specific features
that are critical for classification. Additionally, data variability (e.g., scanner differences,
patient populations) may further exacerbate the problem of overfitting.
5.2. Future Directions of Self-Supervised Learning in Brain Tumor Classification
5.2.1. Hybrid Models Combining SSL with Supervised Learning
One promising direction for the future of SSL in brain tumor classification is the
development of hybrid models that combine SSL with traditional supervised learning. By
leveraging the strengths of both approaches, hybrid models could improve the quality of
learned representations and enhance classification accuracy. For instance, a model could first
pretrain on large amounts of unlabeled data using SSL to learn general feature representations,
and then fine-tune the model on smaller labeled datasets using supervised learning to refine
the representations for specific tumor types (Yuan et al., 2020).
Another approach could involve combining SSL with semi-supervised learning (SSL),
which uses a combination of labeled and unlabeled data during the training process. Recent
research has demonstrated the potential of semi-supervised methods for medical image
analysis, as they allow models to make better use of available unlabeled data while also
learning from the labeled samples.
5.2.2. Advancing Multi-Modal SSL Approaches
The integration of multiple imaging modalities, such as MRI, CT, and PET scans, is a
significant avenue for future research in brain tumor classification. While multi-modal SSL
has shown promise, much work remains to be done to create robust methods that can
effectively combine data from different modalities. One possible future direction is the
development of more sophisticated multi-modal contrastive learning techniques that can
handle the complex relationships between modalities. By designing pretext tasks that
explicitly model the interactions between MRI, CT, and PET scans, SSL models could learn
modality-invariant features that improve classification accuracy. The incorporation of fusion
networks that combine multi-modal features could further enhance tumor detection and
classification (Wu et al., 2020).
5.2.3. Federated Learning and Privacy-Preserving SSL
Given the sensitivity of medical data, privacy concerns are a major barrier to sharing and
utilizing large-scale medical datasets across institutions. Federated learning (FL) combined
with SSL offers a promising solution for training models on distributed datasets without
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compromising patient privacy. In this setup, models are trained locally on each institution's
data, and only model updates (not raw data) are shared to update a global model (Sheller et
al., 2020).
Federated SSL could potentially enable collaboration between hospitals and research
institutions worldwide, facilitating access to diverse datasets and improving model
generalization. However, challenges related to model convergence, data heterogeneity, and
communication overhead must be addressed to fully realize the potential of federated SSL in
brain tumor classification.
5.2.4. Improved Interpretability Through Explainable SSL Models
Another key direction for future research is the development of explainable SSL models that
can provide transparent and interpretable predictions. Given the complex and
high-dimensional nature of brain tumor images, it is crucial for clinicians to understand the
reasoning behind a model’s decision-making process.
Techniques such as attention mechanisms, saliency maps, and feature attribution methods
could be further integrated with SSL models to provide more interpretable insights into which
parts of an image contribute to the tumor classification decision. By enhancing the
transparency of SSL models, we can foster greater trust among clinicians and improve the
adoption of AI-based systems in real-world clinical environments.
5.2.5. Incorporating Domain Knowledge and Biology into SSL Models
Incorporating domain-specific knowledge and biological insights into SSL models could
significantly improve their performance in brain tumor classification. Tumor-specific features,
such as the location, shape, and growth patterns of tumors, may not always be captured by
traditional SSL pretext tasks. To address this, future research could focus on incorporating
domain knowledge from radiology and neurobiology into the SSL model’s architecture or
training procedure.
For example, integrating tumor growth patterns or incorporating prior knowledge from
histopathological studies could help the model focus on more biologically relevant features,
improving both classification accuracy and model generalization.

Advantage Description Limitation Impact

Reduces
Dependency on
Labeled Data

SSL can train
models on vast
amounts of
unlabeled data,
minimizing the need
for extensive manual
annotations.

Requires
high-quality
unlabeled data to be
effective.

Facilitates tumor
classification with
fewer labeled
samples.

Enhances
Generalizability
Across Datasets

SSL-based models
can generalize well
across different
datasets and imaging
modalities (MRI,
CT, PET).

Domain shifts
(differences in
acquisition
protocols) can
affect performance.

Increases
robustness across
diverse medical
imaging data.
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Improves
Performance in
Low-Data
Scenarios

SSL improves model
performance even
when labeled data is
scarce.

Fine-tuning still
requires some
labeled data.

Useful in settings
with limited
annotated datasets.

Facilitates Transfer
Learning

SSL pretraining can
be transferred to
other related medical
imaging tasks.

Requires complex
pretraining tasks
and high
computational
resources.

Reduces the need
for task-specific
datasets for every
new classification
task.

Table 3: Advantages and Limitations of SSL in Brain Tumor Classification
6. Conclusion
The integration of artificial intelligence (AI) and deep learning (DL) into medical imaging
has revolutionized the detection and classification of brain tumors, offering the potential to
improve diagnostic accuracy, reduce human error, and save time, ultimately enhancing
patient outcomes. However, a significant challenge remains in the form of limited availability
of large, annotated datasets for training deep learning models. Annotating medical images
requires expert knowledge and is both time-consuming and costly, making it difficult to
acquire large labeled datasets. Self-supervised learning (SSL) presents a solution to this
challenge by enabling models to learn useful feature representations from unlabeled data,
reducing the dependence on expert annotations.
SSL enables deep learning models to utilize large amounts of unlabeled data by solving
pretext tasks, which generate supervisory signals without requiring manual labeling. Once
trained, these models can be fine-tuned with smaller labeled datasets for specific tasks, such
as brain tumor classification. This approach not only reduces the reliance on costly labeled
data but also democratizes the use of AI tools in medical settings, making tumor detection
systems more scalable and accessible.
SSL has proven effective in brain tumor classification across various imaging modalities,
including magnetic resonance imaging (MRI), computed tomography (CT), and positron
emission tomography (PET) scans. These imaging techniques offer unique insights into
tumor characteristics, and combining them through SSL-based models enhances classification
accuracy. Multi-modal SSL approaches integrate information from different imaging
modalities, resulting in a more comprehensive and robust classification process. Moreover,
SSL techniques like contrastive learning, generative models, and clustering-based methods
allow models to learn rich feature representations from unlabeled images. These methods can
improve the classification process by identifying subtle tumor characteristics and augmenting
limited datasets.
Despite its advantages, several challenges hinder the full adoption of SSL in clinical practice.
One challenge is the limited availability of annotated datasets for fine-tuning SSL models.
While SSL can learn from large-scale unlabeled data, it still requires expert-annotated
datasets for specific tasks like tumor classification. Hybrid approaches, combining SSL with
traditional supervised or semi-supervised learning, show promise in addressing this issue.
Another challenge is the domain shift across different imaging modalities. MRI, CT, and PET
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scans have unique characteristics, and SSL models need to be capable of handling variations
in resolution, contrast, and noise levels to ensure generalization across these modalities.
Research into multi-modal SSL approaches is needed to address these domain shifts.
Interpretability is also a significant challenge for SSL models. In clinical settings, it is vital
that physicians understand the reasoning behind AI model predictions. SSL models, often
considered "black boxes," need to be interpreted to ensure trust and safe use in clinical
decision-making. The application of explainable AI (XAI) techniques to SSL models is an
ongoing area of research, with the goal of making model decisions transparent and
interpretable for clinicians. Computational complexity presents another obstacle. Training
deep learning models, particularly SSL models, requires substantial computational resources,
which can be a barrier for smaller healthcare institutions. Efficient SSL techniques, such as
lightweight architectures, are needed to make these models more practical and accessible in
diverse clinical environments. In conclusion, SSL offers significant potential for advancing
brain tumor classification by reducing the dependency on large annotated datasets and
enhancing the generalizability of models across different imaging modalities. While
challenges remain, such as the need for annotated data, domain shift across modalities,
interpretability, and computational complexity, ongoing research in hybrid models,
multi-modal SSL, federated learning, and explainable AI will likely address these issues. SSL
has the potential to transform computer-aided diagnosis in neuro-oncology, leading to earlier
detection, better treatment planning, and improved patient outcomes.
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