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ABSTRACT

The most recent developments in microbiological diagnostics are highlighted in

this review, with an emphasis on quick and precise techniques that are essential

for treating critically sick patients who may have bacterial infections. Rapid,

accurate diagnostic tools that go beyond conventional culture-based methods are

desperately needed, especially in light of the growing problem of antibiotic

resistance and the high morbidity and mortality linked to sepsis in intensive care

units. Improved pathogen identification and resistance profiling are promised by

emerging technologies such as sophisticated omics techniques, nucleic acid

amplification, direct-from-blood testing, and quick antigen detection. Diagnostic

speed and accuracy are being revolutionized by AI-enhanced techniques like

SepsetER and the Sepsis ImmunoScore, as well as cutting-edge platforms like T2

magnetic resonance and nanopore sequencing. However, these techniques still

depends on their incorporation into strong antimicrobial stewardship initiatives
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Introduction

Bacterial diseases such as sepsis make up 37% and it affects 4% of ICU patients in Europe (24.7%

on admission) and expresses high mortality, morbidity, and healthcare-related costs [1]. It emerges

that about 70% of ICU patients worldwide require antibiotics every day. Fast detection is important,

especially with high levels of resistance to antimicrobial drugs [2]. There is a need for diagnostic

tools that can distinguish between infective and non-infective inflammation and encourage reduced

utilization of antibiotics [3]. Current diagnostic strategies in sepsis usually include the blood culture

to check for bacteraemia, but this strategy is time-consuming and is associated with pre-analytical

sampling issues like, insufficient blood sample, previous antibiotic administration and time taken to

deliver the sample to an off-site laboratory [4-6]. However, novel approaches such as matrix-assisted

laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF) provides rapid,

inexpensive bacterial identification that can replace turn-around times (TATs) in microbiological

diagnostics [7]. This article aims to identify new and developing technologies helping enhance

rapid and accurate microbiological diagnosis in patients with severe bacterial infections and sepsis

[8-9].

Established Rapid Diagnostic Methods

Developments in the rapid diagnostic tools and the automation of work flow systems have improved

the healthcare at a great deal [10-13]. Current methods in culture media include automated blood

culture (BC) systems such as BACTECTM FX and BacT/ALERT® for detection of organization

growth in cases of bloodstream infections [14] . For example, the BacT/ALERT® VIRTUO system

provides shorter time to detection and greater bacterial recovery [15-17]. These systems are generally

based on internal sensing, that detect the microbial growth via carbon dioxide or change in pH [18] .

Microscopy and Gram staining of sterile fluids should always be performed in severe infections,

although these procedures are more time-consuming and depend on the skills of the operator [19].

SepsetER Test: Septicemia is a potentially fatal bloodstream infection that is a major global public

health concern that can be fatal if left untreated with the right antimicrobial treatments [20]. The

SepsetER test is a blood-based gene expression assay that employs AI to rapidly identify infections

at increased risk of severe sepsis [21-22]. Developed by ASEP Medical Holdings Inc., this test

provides results within about an hour, enabling swift risk assessment and intervention [23].

and validation through well planned clinical trials. The potential of these new

technologies is rigorously evaluated in this review, along with the crucial actions

needed to turn them into improved patient outcomes.
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AI-Based Antimicrobial Susceptibility Testing: The Keynome gAST technology analyzes

bacterial genomes directly from patient blood samples using machine learning methods [24]. By

avoiding conventional culture techniques, this method makes it possible to anticipate antibiotic

resistance quickly and accurately, which is essential for the prompt and efficient treatment of sepsis

[25-26].

While machine learning in automated Gram stain picture acquisition and automated staining result

classification are significant advancements, full auto-mode operation is still a long way off [28].

Because the coagulase test takes less time than previous procedures, it is now more feasible to

identify pathogens like Staphylococcus aureus from BC [29-30]. Faster antimicrobial susceptibility

testing, such as that developed by the European Committee on Antimicrobial Susceptibility Testing

(EUCAST), produces results in 4–8 hours [31].

β-lactamases: Commercial kits for the detection of resistance mediators include β-lactamases, which

enable the quicker turnaround time of carbapenemase and extended-spectrum β-lactamase (ESBL)

generating organisms than traditional approaches [32-33].

Figure 1: Workflow of gram staining method [27].

Figure 2: Beta (β) Lactamase Test [34].
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The urine antigen test for Streptococcus pneumoniae and L. pneumophila in respiratory infections is

one example of a serological test that uses direct antigens in clinical samples [35]. Nevertheless,

these tests typically lack patterns of antibiotic resistance and have low sensitivity and specificity [36].

Sepsis ImmunoScore

The Sepsis ImmunoScore, an AI-powered diagnostic tool created by Prenosis, assesses 22 health

indicators, such as blood pressure and vital signs, to produce a sepsis risk score [37]. This technique

facilitates infection diagnosis and forecasts the probability of a severe sepsis developing within 24

hours, enabling timely action [38].

PCR or Nucleic acid amplification tests (NAAT)

Tests for nucleic acid amplification, or PCR, are non-culture techniques used to identify several

diseases [39]. In contrast to single PCR, cold multiplex PCR amplifies the various specimens;

however, it is technically complex, requires specialized facilities and skilled personnel, lacks

antibiotic susceptibility data, and may not detect uncommon pathogens or low prevalent organisms

[40–43]. Via inflammatory and anti-inflammatory modulators, sepsis and severe infection have been

shown to trigger an immune response [44-45].

C-Reactive Protein (CRP)

The liver produces CRP, an acute-phase protein, in reaction to inflammation, which is mostly

brought on by bacterial infections, trauma, or autoimmune disorders [46].

• In response to bacterial infections, levels increase quickly (within 6–12 hours).

• Bacterial infections are more likely to be indicated by higher CRP values (>100 mg/L) than viral

infections [47].

• It is not exclusive to bacterial infections; it can also arise as a result of tissue damage, virus

infections, or long-term inflammatory diseases such rheumatoid arthritis [48].

Procalcitonin (PCT)

PCT is a precursor of the hormone calcitonin, which is generated in reaction to bacterial infections

but is not markedly increased in autoimmune disorders or viral infections [49].

• Extremely specific for bacterial infections, particularly those that are severe (meningitis, pneumonia,

and sepsis) [50].

• Increases 2–6 hours after infection and peaks 24–48 hours later.

• While low levels (<0.1 ng/mL) suggest a viral infection or non-infectious inflammation, higher

levels (>0.5 ng/mL) suggest a bacterial infection [51].

• Helpful in evaluating the efficacy of antibiotic therapy and in differentiating between bacterial and

viral infections [52].
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These biomarkers make it possible to manage antibiotic prescriptions and determine the patients' risk

of infection. Among these is procalcitonin, which has been used to determine when to cease

antibiotics and has reduced treatment time in intensive care units for both adults and newborns.

New and Emerging Methods

New rapid diagnostic tests (RDTs) can quickly identify pathogens and resistance profiles, with

potential to improve patient management. However, studies on their clinical impact remain limited

[54].

AI-Enhanced Imaging for Respiratory Diseases

By examining lung ultrasonography videos, an artificial intelligence algorithm developed by Charles

Darwin University researchers can identify illnesses including pneumonia and COVID-19 [55]. The

algorithm examines each video frame to identify significant lung features and patterns, with a

diagnosis accuracy of 96.57% [56–57]. This method helps radiologists make clinical decisions by

expediting diagnosis and producing results that can be explained [58].

Figure 3: Representative chest radiographs in six patients show (A, C, E)
false-positive findings and (B, D, F) false-negative findings as identified by

the artificial intelligence (AI) tools [59].
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New Approaches towards Infection Diagnosis

In ICU settings, multiplex PCR is being utilized more and more in clinical practice to diagnose

pneumonia and infections of the central nervous system [60–61]. In just one hour, the BioFire

FilmArray Meningitis/Encephalitis panel can identify 14 pathogens with 90–97% sensitivity and

specificity [62]. In critically ill patients, the BioFire FilmArray Pneumonia plus Panel improves

antibiotic stewardship by detecting 27 bacteria and 7 resistance indicators [63].

Personalized Treatment Plans for Respiratory Conditions

RhinoMAP is an AI-based tool being developed by Diag-Nose.io to customize treatment for

respiratory diseases such as asthma and chronic obstructive pulmonary disease [64]. Within 48 hours,

the AI suggests the best medication regimens based on biological data from nasal liquid biopsies,

with the goal of symptom relief and better patient outcomes [65].

Nucleic Acid Detection from Blood Cultures

Several new rapid diagnostic tests can directly detect pathogens and resistance markers from positive

blood cultures, without waiting for bacterial growth [66]. Examples include multiplex PCR panels

like the BioFire FilmArray BC test, which identifies 24 pathogens and 3 resistance genes, and the

Xpert MRSA/SA BC assay, which uses real-time PCR to detect methicillin-resistant and

susceptible Staphylococcus aureus [67].

VERIGENE® Blood Culture Nucleic Acid Tests

With great sensitivity and specificity, these techniques enable the direct identification of bacteria and

genetic resistance indicators from positive blood cultures [68].

22 microorganisms and their resistance determinants are identified from positive cultures using the

Verigene technology, which uses multiplex PCR and microarray [69–70]. Another method is

fluorescent in situ hybridization (FISH) using DNA probes that target bacterial and fungal ribosomal

RNA [71]. Compared to conventional culture-based techniques, these quick assays may allow for

quicker optimization of antibiotic medication [72].

Nanopore Sequencing Technology

Without requiring a previous culture, nanopore sequencing provides real-time analysis of microbial

DNA straight from positive blood cultures, facilitating thorough pathogen identification and

antibiotic resistance prediction [73].

Pathogen Detection Direct from Blood

New rapid diagnostic technologies can detect pathogens directly from whole blood samples, without

the need for blood culture. This includes PCR-based tests like SeptiFast and Magicplex, which can

identify multiple microbes and resistance markers, but have limited sensitivity [74]. The T2

magnetic resonance (T2MR) technology combines PCR with magnetic nanoparticles to quickly
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identify common Candida species and ESKAPE bacteria from whole blood [75]. MALDI-TOF mass

spectrometry and combined PCR/mass spectrometry platforms like IRIDICA also show promise for

direct pathogen detection from clinical samples [76].

IRIDICA was a rapid molecular diagnostic platform developed by Abbott that used

PCR/electrospray ionization mass spectrometry (PCR/ESI-MS) technology to detect bacterial, fungal,

and viral pathogens directly from clinical specimens, including blood, respiratory, and sterile fluids,

without requiring bacterial culture [77].

While these direct-from-blood methods have potential to improve antimicrobial stewardship, their

clinical benefits are still uncertain, and some assays have been discontinued. Integrating these new

diagnostics into effective antimicrobial stewardship programs remains a key challenge [78].

Direct Metagenomics

In clinical microbiology Metagenomics-based assays are the most important tools because they can

find any type of microorganisms in a given sample [79].

16S metagenomics is based on amplifying the bacterial 16S rRNA gene using universal primers,

followed by amplicon sequencing to identify bacteria and perform taxonomic profiling [80].

SepsiTest (Molzym) is used to detect pathogen in blood but it can’t detect polymicrobial infections

and fastidious organisms and doesn’t provide AST. Moreover, its role in informing a clinical

discussion is limited [81]. Shotgun metagenomics can read complete bacterial genomes by using

parallel sequencing, as a result it can provide exact taxonomic resolution and detect markers of

antimicrobial resistance of all pathogens. iDTECT Dx Blood (PathoQuest) can detect more

clinically relevant microorganisms than conventional microbiology in immunocompromised patients,

and its value of prediction is negative [82].
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Karius NGS Plasma Test

From a single blood draw (plasma), the Karius Test, an AI-powered next-generation sequencing

(NGS)-based metagenomic assay, can identify more than 1,000 pathogens (bacteria, fungus, DNA

viruses, and parasites) [83]. It is a quick, non-invasive, culture-free diagnostic method for detecting

bloodstream infections in critically ill and immunocompromised individuals [84]. The Karius Test is

93.7% more sensitive than BCs in patients and can identify microbial cell-free DNA from more than

1200 bacteria [85].

Although shotgun-metagenomics may fully analyze the microbial genetic material present in a

sample, these procedures are challenging due to several constraints [86].

Virus Identification

Viral sequences in metagenomic data have been found using artificial intelligence. Tools like

DeepVirFinder, which beat conventional methods in accuracy and speed, use deep learning

algorithms to predict viral sequences [87].

Clear results for bloodstream infections may be difficult to obtain when contaminants and colonizers

are detected during NGS testing. According to a recent study, the sepsis indicating quantifier (SIQ) is

useful for differentiating infections that are clinically important [88]. Furthermore, NGS sensitivity is

reduced in samples with a strong nucleic acid background, necessitating the reduction of human

DNA [89]. Delays, extra expenses, and problems with data storage, privacy, and regulatory

accreditation might result from labs lacking standardized analysis techniques and bioinformatics

expertise [90].

New Rapid AST Methods

Detecting resistance genes may not always reflect the actual sensitivity pattern of the identified

pathogen. The FDA-approved Accelerate Pheno system can detect 16 microorganisms and perform

phenotypic AST with over 96% agreement compared to standard methods. Studies have shown that

the time of optimal therapy in patients improves by this test [91].

AI-Based AST Methods

Name of Method
Time to Outcomes

Technology

Important Features

Oxford AI-

Powered AST

~30 minutes Machine Learning on

bacterial growth

Fast, high accuracy,

suitable for urgent care

settings

GPT-4 ~3-6 hours AI (GPT-4) and Detects resistance
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Antimicrobial

Resistance

Detection

Real-time genomic/phenotypic

data [92]

mechanisms from

genomic sequencing

Automated Optical

System

~6 hours Intensity & Deep

Learning

Cost-effective, reduces

incubation time

AI for Sepsis

Diagnosis [93]

~12 hours AI &

Pathogen/Resistance

Detection

Fast sepsis diagnosis,

helps with early

antibiotic choice [94]

Deep Learning

Single-Cell

~3-6 hours Deep Learning &

Imaging

High sensitivity,

structural changes at the

cell level

Advances in microfluidics, electronics, optics, and biosensor techniques show promise for next-

generation rapid AST. However, studies are ongoing to achieve FDA approval and CE marks

because of their role in addressing point-of-care testing (POCT) needs is still scarce [95].

Transcriptomics

Current infection biomarkers provide limited insights into the host response to infection and offer

only binary outcomes for infection severity or bacterial probability. More comprehensive infection

characterization can be achieved through omics technologies, including proteomics, metabolomics,

epigenomics, and transcriptomics [96]. Transcript-based diagnostics, such as the FDA-approved

Septicyte, have the potential to differentiate between bacterial, viral or fungal pathogens and

inflammatory phenotypes, potentially enabling personalized treatment for sepsis [97]. However, their

implementation in ICU settings requires timely assay performance and demonstration of clinical and

cost-effectiveness through trials. These advanced diagnostic tools can provide a more nuanced

understanding of the host’s response to infection, moving beyond the limitations of current

biomarkers and enabling more targeted and effective treatment strategies [98].

Point of Care Diagnostics (POCT)

The use of laboratory-based tests can introduce delays and distance between the patient and the

clinician, which can be particularly problematic in remote or resource-limited locations. In Australia

and other regions, point of care testing (POCT) must adhere to strict governance and quality

standards [99]. Unfortunately, at present, there are no POCT solutions that can accurately diagnose
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bloodstream or critical infections. Future advances may include microfluidic devices that handle all

molecular detection steps within a portable device. Despite substantial pre-clinical research, no

commercial products are ready for clinical evaluation [100].

Evaluating Novel Rapid Diagnostics

Evaluating rapid diagnostic technologies involves more than just reduced turnaround time. Key

factors include sensitivity, specificity, result type, and clinical confidence. Comprehensive evaluation

should include trials or interrupted time series analyses measuring clinical and process outcomes,

along with cost-effectiveness analyses [107]. However, high quality evidence in this area is sparce.

Rapid technologies alone do not improve outcomes without integrated antimicrobial stewardship

(AMS) strategies. Successful AMS strategies coupled with rapid diagnostics can improve

antimicrobial use and de-escalation through the impact on clinical outcomes varies [108].

Barriers to effective implementation include prescribing behaviors and familiarity (RDT) results. For

molecular RDTs to be successfully implemented, significant resources, ongoing phenotyping testing,

and robust AMS support are required, tailored to local contexts [109].

Conclusion

AI-driven developments in pathology and microbiology are drastically changing research and

diagnosis procedures. More efficiency, accuracy, and speed are provided by these advancements,

which range from improving image analysis for histopathology to increasing pathogen identification

and antibiotic resistance prediction. Methods like deep learning models for microbial resistance, AI-

powered picture segmentation, and AI-enhanced DNA extraction are transforming the way

researchers and doctors approach cancer pathology and microbiological diagnostics.

There is a chance that certain novel microbiological methods could enhance our capacity to promptly

and precisely identify pathogens in patients in critical condition. However, before we can state with

certainty more about these technologies and how effective they are at treating serious illnesses, we

must do well structured study.
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