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ROLE OF GENOMICS AND PROTEOMICS IN DISEASE DIAGNOSIS
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ABSTRACT

Genomics and proteomics are quickly transforming the practice of clinical
medicine with regard to disease diagnosis through early, precise and
personalized detection of complex disorders. In this study, we explore how
whole-exome sequencing and mass spectrometry-based proteomic profiling
can be combined to produce greater diagnostic utility in three key clinical
areas: breast cancer, Alzheimer disease, and type 2 diabetes mellitus. A
group of 120 participants (patients and healthy controls) were enrolled to
undergo comprehensive genomic and proteomic analysis. Important disease
specific genetic mutations, e.g. BRCA1/2/HER2 in breast cancer, APOE 4
in Alzheimer disease, TCF7L2 in diabetes and their relationship with
respective protein biomarkers, e.g. HER2 protein, tau, and amyloid- 82,
inflammatory cytokines were identified. The diagnostic accuracy of
statistical and machine learning models were high (up to 94.2%), and gene
variants were strongly correlated with protein expression levels (r > 0.7).
These results affirm that multi-omics in tandem increases the classification
of disease and biomarker identification in a grand magnitude compared to
traditional methods. The article underlines the potential of genomics and
proteomics in enabling earlier accurate diagnosis and informing customized
medicine, but also points to the issue of validation upon greater scale and
the application of apparatus to clinical practice.
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I.
Introduction
The blistering pace of development in
molecular biology has transformed the way
we understand disease pathology, in large part
due to the rise of two potent disciplines:
genomics and proteomics. Genomics is the
branch of science that examines the structure,
functionality, evolution, and mapping of
genomes, which consist of all the genetic
material in an organism (Feero et al., 2010).
This field will enable scientists to discover
mutations, polymorphisms, and other changes
in genomes that cause illnesses (Collins &
Varmus, 2015). Simultaneously, proteomics,
as a broad application to proteins, their
interactions, structure, and functions, offers
critical information about the processes of a
dynamic biological response that occur
downstream of genomic expression
(Anderson & Anderson, 2002). Proteomics is
an essential supplement to genomics in
explaining disease pathogenesis since proteins
are cells and tissues major functioning
molecules (Aebersold & Mann, 2016).

Combined characterization of
genomes and proteomes, commonly referred
to as multi-omics, has set the foundation of
major advancements in disease diagnostics
through enabling a more thorough
interpretation of both genetic predispositions
and phenotypic manifestation (Misra et al.,
2019). As an example, through genomic
sequencing, one can identify certain mutations
of cancer-related genes like BRCA1, TP53,
and KRAS, which are cancer risks (Roberts et
al., 2013). Biomarkers such as prostate-
specific antigen (PSA) and HER2 suggest the
presence of cancer and therapeutic targets,
and can be detected through proteomic
profiling (Kim et al., 2016). These datasets
can be used together to detect the disease
earlier and classify it more accurately, as well
as reveal specific interventions (Hasin et al.,
2017).

The value of genomics and proteomics
to the clinical field of diagnostics can be
traced to the fact that genomics and
proteomics have the potential to address the
shortcomings of the conventional diagnostic
procedures, which in many cases, are based
on the manifestations of the symptoms and/or
diagnostic procedures that can be either non-
specific or less sensitive (Zhang et al., 2014).
As a case in point, in neurodegenerative
disorders, like Alzheimer, where patients
exhibit symptoms years after a pathological
process has taken place, unique intervention
necessitates diagnosis at an early age by
means of genomics (i.e, APOE gene variants)
and proteomics (i.e., cerebrospinal fluid levels
of tau protein and amyloid-beta) (Blennow &
Zetterberg, 2018). On the same note,
infectious diseases: genomic sequencing
enables the fast diagnosis and characterization
of the pathogen, and proteomics clarifies the
relationship with the host, which informs the
development of vaccines and antimicrobial
therapies (Didelot et al., 2012; Siqueira et al.,
2021).

Genomics and proteomics are essential
in the age of precision medicine. They make it
possible to stratify patients according to
molecular portraits and make sure that the
treatment is adjusted to the unique genetic and
proteomic topography of the individual
(Schork, 2015). As an example, narrowed
down to pharmacogenomic testing, the ability
to predict how one individual may react to
medicines by looking at genetic variants, and
the proteomic signature allowing one to track
the efficiency of therapy and the reoccurrence
of a disease (Tian et al., 2022). These
individualized methods have been promising
in rare genetic disorders, cardiology and
oncology (Jameson & Longo, 2015).

However, problems still exist despite
these breakthroughs. Interpretation of
genomic data is a multi-faceted process that
can be complicated and potentially needs to
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be combined with clinical data and the other
omics layers (Manolio et al., 2017). Technical
challenges to proteomics are, however, in
terms of protein diversity, abundance, and
post-translational modifications (Altelaar et
al., 2013). In addition, one of the frequently
recurring concerns in clinical implementation
is related to standardization of analytical
protocols and ethical considerations regarding
data privacy (Molster et al., 2018).

In this context, the following research
question is answered by the paper: How do
genomics and proteomics help in the early,
and accurate, diagnosis of diseases? This
research will aim to achieve four things: (1)
To understand the strategies used in the fields
of genomics and proteomics with emphasis on
diagnosis; (2) To review the newer
developments in related technologies; (3) To
analyze the capability of these approaches in
the context of using disease related
biomarkers; and (4) To provide an idea of
gaps existing and possible directions of
further studies. Through a critical evaluation
and synthesis of available literature, the study
will enlighten the central role of genomics
and proteomics in revolutionizing disease
diagnosis, and eventually, patient care.

II. Literature Review
1. Overview of Genomics and Proteomics
in Disease Diagnosis
Genomics and proteomics have taken
significant roles in the diagnosis of diseases
with precision and early identification
emerging as one of the prerequisites of
medical practice. Underlying hereditary and
mutational nature of diseases, Genomics
offers insights into the illness-causing genetic
level by studying the structure, function, and
expression of genes (Mardis, 2017). It helps
to identify genetic predispositions and
somatic mutations related to diverse disorders,
thereby assisting clinicians in identifying
possible illnesses long before the symptoms
appear (Goodwin et al., 2016). In turn,

proteomics studies the proteome of cells,
tissues or organisms and provides how
diseases affect the complexity of the proteome,
which includes post-translational
modifications and protein-protein interactions
(Cheng et al., 2021).

In contrast to fixed genomic data,
proteomics captures dynamic biological
mechanisms and interactions with the
environment providing a real-time picture of
the disease progression (Ahn et al., 2020).
Genomics and proteomics as a combination
become complementary fields, with genomics
resolving the possibility of disease and
proteomics clarifying the reality about the
disease. The combination has seen the
discovery of several biomarkers of various
conditions including cancer, autoimmune
diseases, infectious diseases, and
neurodegenerative disorders (Kumar et al.,
2020). Therefore, the combination of these
areas of omics is a paradigm shift in the
direction of predictive, preventive, and
personalized healthcare shifts.
2. Current State of Research: Recent
Studies and Findings
The last few years have seen a focus on the
application of genomics and proteomics in
clinical diagnostics. As an example, whole-
exome sequencing has helped in detection of
rare pathogenic mutations that cause
Mendelian disorders, thus to ascertain genetic
confirmation to cases rendered elusive under
the classical testing (Yang et al., 2014).
Several oncology studies that use genomic
profiling have found tumor-specific mutations
that can be used as diagnostic and therapeutic
targets, including EGFR mutations in non-
small cell lung cancer and IDH1 mutation in
gliomas (Ciriello et al., 2013).
Similar developments have occurred in the
field of proteomics where unique protein
signatures have been identified with various
disease conditions. Proteomic patterns in
serum have been applied to separate
malignant and benign ovarian twins with great
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specificity (Petricoin et al., 2002). Proteomics
has also led to the identification of new
biomarkers in cardiovascular diseases, such as
galectin-3 and growth differentiation factor-
15, or biomarkers linked to heart failure
prognosis (Lok et al., 2015). Moreover, multi-
omics has demonstrated the usefulness of
combining genomic, transcriptomic, and
proteomic data to disentangle molecular
complexity of diseases like type 2 diabetes
and multiple sclerosis (Chen et al., 2021; De
Jager et al., 2009).
Alongside the breakthroughs, however, there
are challenges. Most biomarkers discovered
fail to reach clinical practice because of
reproducibility, sample heterogeneity, and
regulatory complexities. Nevertheless, the
currently discussed further maturation of large
scale consortium driven projects like the
Genotype-Tissue Expression (GTEx) project
and the Human Proteome Organization
(HUPO) remain to augment the underlying
dataset upon which solid and faithful
diagnostic tools can be built (Lonsdale et al.,
2013; Omenn et al., 2019).
3. Techniques and Technologies: Methods
Used in Genomics and Proteomics

The technologies applied to genomics
and proteomics have changed considerably in
the last twenty years. High-throughput
sequencing technologies, which are
sequencing long reads techniques and next-
generation sequencing (NGS) technologies
have transformed the field of genomics due to
their ability to analyze genetic material
extensively and at a reduced cost (Logsdon et
al., 2020). Gene panel sequencing as well as
exome sequencing has become a common
diagnostic tool because of their effectiveness
in clinically important variants (Linderman et
al., 2018).

Mass spectrometry (MS) is also
accepted as the gold standard in the
proteomics field of protein identification and
profiling. Label-free quantification, isobaric
tagging (iTRAQ/TMT), and data-independent

acquisition (DIA) methods have enhanced the
sensitivity and coverage of proteomic analysis
(Zhu et al., 2020). Moreover, new
developments in the field of two-dimensional
gel electrophoresis (2-DE), protein
microarrays, and capillary electrophoresis
have broadened the set of tools that
proteomics researchers can use (Borrebaeck,
2016). The adaptation of bioinformatics tools
and machine learning algorithms also allows
the incorporation of large-scale omics data,
which, in turn, helps to improve the accuracy
of disease classification and biomarker
prediction (Libbrecht & Noble, 2015).

Furthermore, single-cell sequencing
and spatial transcriptomics are emergent
technologies, which are starting to erase the
boundaries between genomics,
transcriptomics and proteomics, enabling
high-resolution mapping of cellular
heterogeneity in diseased tissue (Moffitt et al.,
2018). These technological advances not only
improve our diagnostic ability but they are
also allowing us to enter into new fields that
result in disease modeling and therapeutic
targeting.
4. Applications: Examples of Genomics and
Proteomics in Disease Diagnosis

Practical use of genomics and
proteomics in the diagnosis of diseases cuts
across various fields of clinical application of
these technologies. Genomic sequencing has
become commonplace in oncology with
stratification on molecular subtypes of disease
e.g. breast cancer subtypes based on HER2,
BRCA and P53 mutations (Curtis et al., 2012).
Circulating tumor DNA (ctDNA) liquid
biopsies have become an alternative as
noninvasive methods of early cancer detection
and treatment response monitoring (Wan et al.,
2017). At the same time, proteomic studies
identified urinary biomarkers of bladder
cancer and salivary proteins correlated with
oral cancer proving that body fluids can also
be used as non-invasive sources of diagnostics
(Zhang et al., 2010; Xiao et al., 2016).
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On the example of an infectious
disease, genomics has been successfully used
to quickly isolate and trace a viral pathogen,
such as with COVID-19, where sequencing
SARS-CoV-2 allowed worldwide monitoring
and vaccine creation (Lu et al., 2020).
Proteomics has supplemented these studies by
providing a description of host immune
responses and the identification of viral
proteins to develop diagnostic assays (Nie et
al., 2020). Integrated genomics and
proteomics in neurological diseases have
refined the disease diagnostics, including
Parkinson or Alzheimer diseases, to reveal
their pathways and biomarkers, e.g., LRRK2
mutations and phosphorylated tau proteins,
among others (Nalls et al., 2014; Barthlemy et
al., 2020).

Omics approaches have aided in
autoimmune diseases like systemic lupus
erythematosus and rheumatoid arthritis.
Susceptibility loci have been revealed through
genome-wide association studies (GWAS),
with inflammation proteins, which can be
used as early diagnostic features discovered
through proteomics (Chen et al., 2019;
Ayoglu et al., 2016). In prenatal diagnostics,
even, we can observe the clinical usefulness
of genomics in non-invasive prenatal testing
(NIPT) of cell-free fetal DNA which allows to
detect chromosomal abnormalities (trisomy
21) in prenatal diagnostics (Norton et al.,
2015).

All these applications re-emphasize
the promising power of genomics and
proteomics in diagnostic medicine. They do
not only enhance the detection and
classification of any disease but also lead to
the creation of specific interventions, which
finally leads to better patient outcomes.
III. Methodology
1. Study Design
The study was constructed as a prospective,
observational study that was intended to
assess the significance of integrated
proteomic and genomic analysis in early

detection in the case of targeted diseases. This
study targeted three large categories of
diseases, breast cancer, Alzheimer and type 2
diabetes mellitus, due to their high global
occurrence but well-known genomic and
proteomic insignia. It was a research
involving a tertiary care hospital and a
partnered research institute and carried out in
an 18 months period. The institutional review
board conducted the ethical review, and all
protocols were followed according to the
1964 Declaration of Helsinki, which is a
guideline on human research. The initial
objective was to determine disease-specific
molecular markers using complete genomic
sequencing and proteomic profiling of
biological samples of patients.
2. Participant Selection and Sample
Collection
The samples were taken among the
participants of the outpatient departments of
the clinics and inpatient oncology, neurology,
and endocrinology departments. Inclusion
criteria defined the participants as people 18-
70 years old with a definite diagnosis of one
of the target diseases according to the
combination of clinical and imaging evidence.
Exclusion criteria: Pregnancy; history of
recent infection; autoimmune diseases; or the
consumption of immunomodulatory
medication. There were 90 patients recruited
consisting of 30 patients each in both disease
groups. Moreover, 30 healthy age and sex-
compatible subjects were enrolled as controls.

Blood (10 mL) peripheral blood
samples were taken after the informed consent
was obtained, and tissue biopsies (tissues of
the breast tumor in cases of oncology patients)
were taken under sterile conditions, as well as
cerebrospinal fluid samples (in the case of
Alzheimer patients). The samples were
processed immediately or stored at -80oc to
continue analysis. Genomic DNA was
extracted and proteomic profiling was carried
out on peripheral blood mononuclear cells
(PBMCs) and plasma, as well as serum.
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3. Genomic Techniques
The DNA obtained by PBMCs using QIAamp
DNA Mini Kit was analyzed by the whole-
exome sequencing (WES). The Agilent
SureSelect Human All Exon V7 kit was used
to prepare libraries, and sequencing quality of
the libraries was determined as 100X of
minimum coverage on an Illumina NovaSeq
6000 platform. GATK best practices pipeline
was used to process the data of raw sequences.
Calling of variants was performed with
HaplotypeCaller and annotated with
ANNOVAR to mark out pathogenic and
likely pathogenic mutations. PHRY was
focused on breast cancer cases and
specifically, BRCA1, BRCA2, PIK3CA, and
TP53 mutations. The APOE, PSEN1 and APP
gene variants have been evaluated in
Alzheimer patients, whereas the TCF7L2,
PPARG, and SLC30A8 gene polymorphisms
were evaluated in diabetic patients.
Quality control analysis was carried out by
duplicate reads analysis, base quality filter
and depth of coverage checks. A sample was
done on some of the specifics to confirm
important findings; it was done in
Confirmatory Sanger sequencing.
4. Proteomic Techniques

Analysis of proteomic profiling was
done by liquid chromatography-tandem mass
spectrometry (LC-MS/MS). Protein extraction
followed in plasma samples; the same
samples were subjected to trypsin digestion.
Tandem mass tag labels (TMT) were used to
label peptides to quantify them in a relative
manner. The separation occurred on a C18
reverse-phase column, and the detection was
undertaken using the Thermo Scientific
Orbitrap Exploris 480 mass spectrometer. The
identification of proteins was made using the
SEQUEST algorithm against the UniProt
human protein database.

Tissue biopsies samples were also
labeled-free quantified through spectral
counting and intensity-based MS1 methods.
We used the Perseus software platform to

perform the differential expression analysis
by defining a fold-change threshold (>2) and
a p-value (<0.05) threshold. The DAVID
Bioinformatics Resources and Reactome
pathway analysis were used to determine a
functional annotation of identified proteins. In
breast cancer we have focused more on HER2,
CA15-3, and cytokeratin; in Alzheimer this
has focused on tau protein and amyloid-beta
peptides, and in diabetes we have studied
insulin receptor substrates, adiponectin
protein, and inflammatory cytokines such as
IL-6 and TNF-a.
5. Data Integration and Statistical Analysis

The OmicsNet platform allows visual
fine-grained representation and interpretation
of multi-omics data (genomic vs. proteomic
and functional) integrated on a directed
network representation. The Pearson
correlation coefficients were used in
calculating correlations between genetic
variants and protein expression levels. It used
machine learning models, logistic regression
and support vector machines (SVM), to
classify disease status using features based on
a combination of genomic, proteomic data.
Model outputs were assessed in terms of 10-
fold cross validation with accuracy, sensitivity,
specificity, area under the receiver operating
characteristic curve (AUC-ROC)
measurements deployed among others.

Baseline demographics and clinical
characteristics were calculated into
descriptive statistics. Independent t tests or
ANOVA were used to compare the disease
groups with controls based on continuous data,
whereas chi-square tests were used on
categorical data. All statistical procedures
were performed with R (version 4.2.1) and
SPSS (version 27), the level of significance
was p<0.05.
IV. Results
1. Demographic and Clinical
Characteristics
The demography of the sample population
under study is explained under Table 1 and
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illustrated diagrammatically in Figure 1. The
120 individuals were enrolled, the distribution
regarding gender differed greatly between
groups of disease. The issue of majority
female representation (90%) was observed in
breast cancer groups, and it is correlated with
the epidemiological pattern of the disease.
Contrastingly, in Alzheimer and Type 2

Diabetes as well as in control groups, gender
was more homogenous. Mean age was the
highest in the group of Alzheimer patients
(68.4 years), which can be explained by the
late-onset of the disease, and the average age
of the other groups was quite close (~52-55
years).

Table 1: Demographic Characteristics
Group N Mean Age (SD) Female (%) Male (%)

Breast Cancer 30 52.3 ± 6.5 90% 10%

Alzheimer's 30 68.4 ± 5.8 53% 47%

Type 2 Diabetes 30 55.1 ± 7.2 47% 53%

Controls 30 54.7 ± 6.9 50% 50%

Figure 1: Gender Distribution by Group
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2. Genomic Mutation Patterns Across
Groups
Genomic analysis demonstrated a distinct
mutation profile in all the disease groups as
shown in Table 2. A heatmap (Figure 2)
shows the pattern of mutations of important
genes. Forty percent of breast cancer patients
as well as 60 percent of HER2 gene
amplification was identified in BRCA1/2
mutations which were not found in Alzheimer

and diabetes patients. The APOE ε4 allele
prevalence was high in the Alzheimer cohort
(66.7%), and mutations in PSEN1 and APP
genes were noted. In Type 2 Diabetes, the
most frequent was the mutation of the
TCF7L2 gene (50%), followed by PPARG
and SLC30A8 genes. These data validate the
established genotype-disease correlations and
high specificity of mutation profiles to disease
classification.

Table 2: Genomic Mutations Frequency
Gene Breast Cancer

(n=30)
Alzheimer's
(n=30)

Type 2 Diabetes
(n=30)

Controls
(n=30)

BRCA1/
2

12 0 0 1

HER2 18 0 0 0

APOE ε4 0 20 0 3

PSEN1 0 6 0 0

APP 0 4 0 0

TCF7L2 0 0 15 2

PPARG 0 0 7 1

SLC30A
8

0 0 5 0

Figure 2: Heatmap of Mutation Frequency
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3. Proteomic Profiles and Disease-Specific
Biomarkers
The proteomic profiling showed that there are
big differences between the concentrations of
various biomarkers in different diseases as
seen in Table 3. Figure 3 presents violin plots
of Tau and Amyloid-beta 42 proteins in
Alzheimer disease and controls. Detection of

tau protein in Alzheimer patients was
observed to be significantly higher (88.5
pg/mL vs. 38.2 pg/mL) and amyloid-beta42
was significantly lower (385.2 pg/mL vs.
701.4 pg/mL). Such findings confirm the
usefulness of these biomarkers in detecting
neurodegenerative processes early.

Table 3: Proteomic Biomarker Levels (Mean ± SD)
Biomarker Breast Cancer Alzheimer's Type 2 Diabetes Controls

Tau Protein (pg/mL) – 88.5 ± 12.1 – 38.2 ± 9.4

Amyloid-β42 (pg/mL) – 385.2 ± 45.6 – 701.4 ± 60.7

Adiponectin (µg/mL) – – 4.3 ± 1.0 8.7 ± 1.9

IL-6 (pg/mL) – – 7.1 ± 1.8 1.2 ± 0.4

TNF-α (pg/mL) – – 5.9 ± 1.3 1.1 ± 0.3

HER2 (AU) 2.8 ± 0.5 – – 1.0 ± 0.2
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CA15-3 (U/mL) 34 ± 8 – – 22 ± 5

Figure 3: Violin Plot of Tau and Amyloid-β42

In the case of Type 2 Diabetes, IL-6 and TNF-
a acted as the inflammatory markers which
are highly increased as compared to healthy
controls whereas adiponectin levels were seen
to be reduced, as shown in Figure 4. Such
changes indicate underlying low-grade
inflammation and metabolic imbalances
characteristic of diabetes, supporting the
significance of proteomic threshold variables
in tracking disease status.
4. Correlations Between Genomic and
Proteomic Data
Analysis with Pearson correlation coefficients
shows that there is significant correlation
between the genetic variants and levels of
protein expression as shown in Table 4.
Figure 6 shows these correlations graphically

in the form of a bubble chart. There were
significant positive correlations between
BRCA1/2 mutations and over-expression of
HER2 proteins (r = 0.61, p = 0.002), and
between presence of APOE 4 allele and tau
proteins (r = 0.73, p = 0.001). There was also
a substantive inverse relationship between
APOE 4 and level of amyloid- b-42 (r= -0.71,
p = 0.0005). By contrast, in patients with
diabetes, TCF7L2 mutations had an inverse
association with adiponectin (r = 0.65, p =
0.004) and were associated positively with IL-
6 (r = 0.59, p = 0.009). These data imply
mechanistic corollaries of genetic
predisposition and protein expression specific
to disease, highlighting the diagnostic utility
of multi-omics combination.

Table 4: Pearson Correlation Coefficients
Gene-Protein Pair Pearson r p-value

BRCA1/2 - HER2 0.61 0.002

APOE ε4 - Tau 0.73 0.001



3749

APOE ε4 - Aβ42 -0.71 0.0005

TCF7L2 - Adiponectin -0.65 0.004

TCF7L2 - IL-6 0.59 0.009

Figure 4: Dot Plot of Inflammatory Markers

5. Machine Learning Classification
Performance
Table 5 provides the results of the
performance of machine learning models that
were designed using combined genomic and
proteomic data. The results are presented in
the Figure 5 radar chart, where accuracy,
sensitivity, and specificity measures are
plotted. The best model was the support
vector machine (SVM) model on breast
cancer with a reported accuracy of 94.2%,
sensitivity of 96.7, and specificity of 91.5. In

the case of Alzheimer disease, logistic
regression was also able to attain very high
rates; 92.4 percent accuracy and great
specificity (94.8 percent). The slightly weaker
but still strong SVM model intended to solve
the diabetes problem achieved the accuracy of
88.5%. These outcomes emphasize the
possibilities of machine learning in
establishing high fidelity disease-specific
assessment tools in a scenario where Multi-
omics type of data is supplied to a machine.

Table 5: Machine Learning Model Performance
Disease Model Accuracy

(%)
Sensitivity
(%)

Specificity
(%)

AUC-
ROC
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Breast Cancer SVM 94.2 96.7 91.5 0.95

Alzheimer's Logistic
Regression

92.4 90.0 94.8 0.96

Type 2
Diabetes

SVM 88.5 85.2 91.8 0.89

Figure 5: Radar Chart of ML Performance

6. Descriptive Biomarker Statistics
Clinical biomarkers were also recorded and
analyzed including BMI, fasting blood
glucose, HbA1c levels. Type 2 Diabetes
patients had shown the highest BMI (28.5
kg/m2), blood glucose (158.6 mg/dL), and
HbA1c (8.2%) which are significantly higher
than the remaining groups as shown in Table
6. Figure 7 visually confirms these results and
indicates that there is a consistency in the

trend of plasma levels of HbA1c across all
cohorts in a box plot of HbA1c. Mean HbA1c
in all groups was below the diabetic threshold
(6.5 %), but only in the diabetic group did it
surpass this mark, which visually proves the
classification of the metabolic disorder. Such
standard clinical characteristics correlate with
the underlying molecular data, demonstrating
the soundness of multi-omics profiling
outcomes.
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Table 6: Descriptive Statistics by Disease Group
Variable Breast Cancer Alzheimer's Type 2 Diabetes Controls

BMI (kg/m²) 25.1 ± 3.8 24.7 ± 3.1 28.5 ± 4.2 23.6 ± 2.9

Blood Glucose (mg/dL) 98.3 ± 12.5 101.4 ± 10.8 158.6 ± 20.1 91.2 ± 8.7

HbA1c (%) 5.5 ± 0.6 5.6 ± 0.5 8.2 ± 1.1 5.2 ± 0.4

Figure 6: Bubble Chart of Pearson Correlations

7. Statistical Significance of Biomarker
Differences
ANOVA was utilized to statistically analyze
group differences in biomarkers, as presented
in Table 7. Best F-statistics were recorded
with amyloid-beta 42 (F = 67.1), tau protein
(F = 52.4) and HbA1c (F = 42.3) and ( p <

0.001 ). The lollipop chart (Figure 8) shows
the strength of these associations in a
graphical manner. These findings highlight
the statistical reliability of unidentified
biomarkers and the discrimination ability as
diagnosis.

Table 7: ANOVA Results for Group Differences
Variable F-statistic p-value
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BMI 6.15 0.001

Blood Glucose 38.9 <0.001

HbA1c 42.3 <0.001

Tau Protein 52.4 <0.001

Amyloid-β42 67.1 <0.001

IL-6 31.7 <0.001

TNF-α 28.9 <0.001

Figure 7: Boxplot of HbA1c by Group
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8. Categorical Genotype Comparisons
To analyze the difference in genotype
frequencies between the groups, chi-squared
tests were conducted and are summarized in
Table 8. This showed considerable disparities
in BRCA1/2 (chi squared = 6.13, p = 0.013),
APOE e4 (chi squared = 18.2, p < 0.001) the
same as well as in the instance of TCF7L2

(chi square = 15.4, p < 0.001). Such results
would indicate results in the non-random
presence of genetically related disease alleles
and would argue stronger genotype/disease
phenotype association. These tests contribute
the finishing touch of statistical confidence to
the genomic observations that have already
been made.

Table 8: Chi-square Test Results for Genotype Frequencies
Gene Chi-square (χ²) Degrees of Freedom p-value

BRCA1/2 6.13 1 0.013

APOE ε4 18.20 1 <0.001

TCF7L2 15.40 1 <0.001

Figure 8: Lollipop Chart Of ANOVA F-Statistics

VI. Discussion
The study results highlight the

revolutionary change that genomics and
proteomics are bringing to the early, accurate
and specifically targeted diagnosis of the most
complex diseases like cancer,
neurodegenerative disorders and metabolic
syndromes. With the combination of high-

throughput sequencing content and mass-
spectrometry-derived protein profiling, a
multi-faceted comparison of molecular patient
signatures was possible, with recurrent and
statistically significant proteomic and
genomic signatures occurring between groups
of patients with the disease.
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Among the most important
implications of the study was the capacity to
stratify disease populations with regard to
their molecular properties, justifying the idea
of precision diagnostics. The discovery of
BRCA1/2 mutations and HER2
overexpression in breast cancer supports prior
research conclusions that they are very
predictive of disease risk, as well as response
to treatment (Turner et al., 2015). The case of
HER2 breast cancers, which respond well to
hormone specific treatment such as
trastuzumab supports this view so much that
HER2 as a biomarker is not only a diagnostic
tool but a therapeutic guide (Slamon et al.,
2001). Our study also confirmed the positive
correlation of BRCA mutation and the level
of HER2 protein expression, highlighting the
connectedness of genotypic and phenotypic
data.

The association between increased
level of tau protein, and decreased amount of
amyloid-beta 42 protein in cerebrospinal fluid
reflects the pathological markers of the
disease regarding the neuropathological
studies of Alzheimer illness (Jack et al., 2013).
This close relationship that we discovered
between the APOE 5 allele and tau levels
supports the already available evidence that
APOE 5 is not just a genetic risk factor but
also a modulator of downstream
neurodegeneration (Shi et al., 2017). The
technology of proteomic profiling thus gives a
temporal and mechanistic context to the static
genomic data giving a more dynamic idea
about the progression of the disease.

In the same line, inflammation and
metabolic dysregulation in type 2 diabetes
were apparent in genomic and proteomic
profiles. Occurrence of the TCF7L2 variants,
which is a predisposing factor towards an
impaired insulin secretion (Florez et al., 2006),
along with the increased levels of IL-6, and
TNF-a reaffirm the role of both genetics and
the inflammation pathways in the causation of
the disease. Research has demonstrated that

chronic inflammation enhances insulin
resistance hence strengthening the diagnostic
worth of these markers (Hotamisligil, 2006).
Our findings are further supported by the
relation of adiponectin, an anti-inflammatory
protein that is decreased in our cohort of
diabetic individuals, with early indicators of
insulin sensitivity and cardiovascular
expectancy in cases of metabolic disorders
(Spranger et al., 2003).

Multi-omics strategy used in study is
compliant with current trends in biomedical
studies of the necessity of the integrated
diagnostics. The omics approach is crucial but
it is usually single and it may lack
comprehensiveness to understand disease
biology. In contrast, multi-layered datasets
increase the resolution of diagnosis
classification and will produce the discovery
of new biomarkers (Karczewski & Snyder,
2018). Analyses in pan-cancer have also
demonstrated that combining features of
proteomics and genomics increases the
classification accuracy of tumors and their
prognosis (Zhang et al., 2016). We could
extract high diagnostic accuracies using
machine learning models to interpret multi-
omics data, which leads to a belief that
computational models have the potential to
compress high-dimensional data into useful
clinical information.

As a translational exercise, the
findings are encouraging with regard to
further research in liquid biopsy technologies.
The sensitivity and specificity of screening by
measuring circulating DNA mutations and
protein biomarkers in body fluids could form
the basis of non-invasive, frequent screening
of high-risk populations (Wan et al., 2019).
As an example, liquid biopsy tests that
combine transferrable cfDNA and protein
biomarkers have demonstrated promise as a
strategy in early diagnosis of colorectal and
lung cancers (Cohen et al., 2018). Such
platforms could further be developed as our
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results have found disease-specific molecular
signatures in plasma.

Nevertheless, regardless of the
strengths of this study, a number of
limitations deserve to be discussed. The
sample was moderate in size and this could
restrict the generalization. Multi-site cohorts
of a larger size would be better validators and
would take care of population heterogeneity.
Second, the genomic and proteomic methods
applied may be of state-of-the-art use, but are
not widely employed and existent in ordinary
clinical practice in a cost-effective form.
Nevertheless, as costs of sequencing and mass
spectrometry continue declining, it can be
expected that these technologies will be even
more broadly accessible in the nearest future
(Stephens et al., 2015).

Moreover, multi-omics data has severe
biological challenges of interpretation.
Combining many types of data: each type has
different sources of variability and technical
noise, needs smart algorithms and immense
computing power. However, this is quickly
changing with improvements in machine
learning and artificial intelligence. The most
recent advancements of graph neural
networks and deep learning demonstrated
promising results in combining genomic,
transcriptomic, and proteomic data with
biomarker assays (Chen et al., 2020).

In the future, the field will see further
opportunities through increased longitudinal
multi-omics studies, able to provide a history
of a disease over time. These designs will not
only allow better early diagnosis, but will also
allow prediction of disease progression and
treatment response. In addition, the multi-
omics models can be enriched with the
environmental and lifestyle data to make the
predictions more precise and be helpful in the
design of the holistic diagnostics (Price et al.,
2017).

Last but not the least, ethical and
regulatory factors are significant. The extra
personal genetic and proteomic data in

clinical records makes data privacy and valid
consent to data use essential. Other initiatives,
such as the Global Alliance for Genomics and
Health (GA4GH) are also trying to achieve
international regulations on safe sharing of
data and ethical governance (Knoppers, 2014).

To sum up, this paper cements the
exceptional diagnostic capabilities of
combined genomics and proteomics. The
multi-omics approaches can provide a potent
window on complex disease mechanisms that
bridges the gap between genetic
predisposition and protein expression. These
tools are already backed by our results, and
they should be integrated into clinical
diagnostics to prepare the groundwork of
more accurate, personalized care.
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