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ABSTRACT

Coronary artery disease (CAD) is a leading cause of mortality worldwide,

demanding more precise diagnostic strategies. Traditional AI algorithms, like CNNs,

RNNs, often fail to absorb these complex relational patterns within cardiovascular

data. GNNs give an alternative because they can process such dynamic relationships.

This work attempts to study GNNs for CAD progression modeling and diagnosis,

including the integration of such models within cloud infrastructures for a scalable and

real-time deployment. A systematic literature review was performed in accordance

with PRISMA guidelines. The databases searched were PubMed, Web of Science,

IEEE Xplore, and Google Scholar, yielding 259 articles. After applying inclusion

criteria, 32 studies were selected. These were analyzed from the perspective of GNN

architecture, CAD application area, strategies for cloud deployment, and diagnostic

performance. GNN-based diagnostic models with accuracies of up to 96% and AUCs

higher than 0.90 have been reported in the literature. Subsequent cloud deployment of

these models allows real-time inference and easy integration into hospital systems,

enabling federated learning of new models while preserving patient data privacy. Use
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1. Introduction
1.1 Background and Significance
Coronary artery disease (CAD), with more than 17.9 million deaths annually, remains a leading cause of
mortality worldwide (WHO, 2023). It occurs by the progressive deposition of atherosclerotic plaques in
coronary arteries; thus, myocardial perfusion is diminished more and more, leading to myocardial
infarctions and sudden deaths. Detection at early stages and accurate CAD progression mapping can reduce
morbidity and mortality and thus allow the specification of treatment options for the patient.
By contrast, the CAD progression occurs dynamically and multifactorially, involving structural changes in
vessels and hemodynamic changes, genetic predisposition, behavioral risk factors, and associating
conditions such as diabetes and hypertension (Wang et al., 2024; Huang et al., 2022). Present clinical tools
are never able to capture such dynamism. The standard clinical-administrative tools of CCTA, ECG, and
laboratory testing offer only static snapshots and limited views depending on trends (Hampe et al., 2024;
Ashtaiwi et al., 2024). In response to this, an increasing number of researchers have experimented with AI
models to fill this vacuum. Some AI use cases in cardiology include diagnosis, prognostication, image
segmentation, and risk stratification (Sun & Zhang, 2024; Beetz et al., 2022). There have also been
cardiovascular prediction attempts with more conventional ML approaches, such as Random Forests or
Support Vector Machines, and deep architectures like CNNs and RNNs (Imran et al., 2024; Chhikara et al.,
2024). Still, there are some serious weaknesses to these techniques: traditionally, operating on data prepared
in tabular or raw-image form limits their powers in modeling complex relational structures, such as
interactions among vessel segments or patient-level similarities across multimodal datasets. CNNs are not
efficient at capturing long-range or non-grid dependencies of other forms (Lin et al., 2023), whereas RNNs
are limited in the spatial dependencies they give meaning to. Such constraints constitute barriers that ought
to remain for the best CAD progression modeling, wherein anatomical-, functional-, and behavioral-based
dynamics are all incorporated.
1.2 Introduction to Graph Neural Networks (GNNs)
The limitation in modeling structures was thus overcome by GNNs. While a conventional neural network
views data as arrays, GNNs view data entities as graphs. It goes without saying that the concept is quite
valid for cardiovascular modeling.
For instance, the coronary artery tree can naturally be modeled as a graph, where arterial segments are nodes
and bifurcations or anatomical continuity are edges (Hampe et al., 2024). In a similar vein, patients in
population-based studies can be nodes in a similarity graph with respect to risk factors or comorbidities (Lu
& Uddin, 2021). Also, nodes in GNNs can pass messages between each other, allowing the learning to be
context-aware and represent local and global patterns (Kwon et al., 2025; Huang et al., 2022).
The subtypes of GNN, such as GCNs, GATs, and MPNNs, have so many ways of handling feature
propagation, time dependency, and interpretability (Beetz et al., 2022; Lin & Prasanna, 2023).
1.3 Role of Cloud Computing in AI for Medicine

cases include coronary imaging, ECG analysis, and behavioral risk profiling. GNNs,

combined with cloud technologies, present a transformative approach for precision

cardiology, enabling accurate and personalized CAD diagnostics. However, adoption

in clinical settings requires further advancements in model explainability, privacy

safeguards, and regulatory compliance. Future research should emphasize open CAD

graph datasets, improve GNN interpretability, and validate these systems in real-world

clinical environments



5325

Hosting AI in healthcare from certain cloud computing platforms such as AWS, Microsoft Azure, and
Google AI indeed provides scalable, secure, and highly performant infrastructure for training and
deployment of models. This is crucial for GNNs since the rise in computing and memory requirements is
very steep with graph size and depth (Lin & Prasanna, 2023). Cloud infrastructures enable parallelized GNN
training using tools like PyTorch Geometric, DGL, or GraphStorm, and support real-time inference via
REST APIs or model servers (Wong et al., 2024). Federated learning and edge-cloud architecture can,
moreover, improve data privacy and capacity for real-time diagnosis, both of which are essential for CAD
modeling (Alfurhood, 2024; Raja et al., 2024).
1.4 Scope and Aims of the Review
The chief aim of this systematic review is top synthesize present-day literature concerning the use of cloud-
deployed GNNs in mapping the progression of coronary artery disease. It examines how these models are
constructed, trained, deployed, and evaluated, with their clinical applicability and the supporting
infrastructural frameworks. The review further identifies best practices, common challenges, and open
questions regarding scalability, interpretability, and cloud integration, thereby providing a basis for the
eventual clinical translation.

Figure 1: Conceptual overview illustrating how Graph Neural Networks (GNNs) are specially suited to
effectively model the complex interconnectedness that constitutes coronary artery disease data and thus are
conceptually regarded to be more efficient than conventional deep learning approaches which learn only on
anatomical or functional or population relationships taken separately.
2. Literature Review
2.1 Graph Neural Networks in Healthcare
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Graph Neural Networks (GNNs) have been established as a paradigm that affects the modeling of complex
and relational biomedical data. While the rest of the machine learning methods take tabular data as input,
GNNs deal with graph-structured data in which entities (nodes) and types of relation between those entities
(edges) are very important. Using the GNN due to their nature is ideal for connectivity, temporality, and
multimodal health data (Sun et al., 2020; Lu & Uddin, 2021).
This means a range of GNN architectures finds application in the health sector: GCNs to pool neighborhood
features, GATs for dynamic edge weighting, and MPNNs for sequential dependencies. Pathways of
applications of such models include disease classification, interacting molecular networks, and electronic
health records.
Importantly, Andayeshgar et al. (2024) brought about a major change to GCNs for arrhythmia detection
through the construction of the weighted mutual information adjacency matrix to express nonlinear relations
between cardiac leads. Their model, being trained on 12-lead ECG data, outperformed standard adjacency-
based GCNs and gained substantial clinical sanity by leveraging polarity-aware graph construction
approaches. Similarly, Tang et al. (2023) strengthened the use of spatiotemporal GNNs for hospital
readmission prediction. Their model processes a multimodal source of patient information that includes
chest radiographs and physiological signals, showing that timeliness coupled with spatial graph modeling
amenable can greatly improve prediction capabilities in practical settings.
Thus, these studies showcase the tremendous potential of GNNs in learning from heterogeneous biomedical
data, simultaneously modeling both static features and dynamically changing interactions through time-the
key to modeling the course of disease.
2.2 GNNs for Cardiovascular Applications
The formation and function of the cardiovascular system lend themselves naturally to graph-based modeling.
Vascular networks, sequences of ECGs, and graphs of patient similarity can all be modeled as graphs, and
GNNs can work on these representations so as to increase diagnostic accuracy.
Hampe et al. (2024) developed a GNN for CCTA, constructing anatomical graphs of the coronary tree to
assist automatic labeling of artery segments. Their approach improved anatomical interpretability, showing
great promise for automated reporting tools, whereas Zhang et al. (2025) proposed the Coronary p-Graph-an
entirely new graph-based technique for the classification and localization of coronary artery stenosis based
on CTA images that were DSA-based annotated. In doing so, the model was more precise than CNNs with
spatial resolution and classification. Other imaging-related applications are found in Xu and Wu (2024),
where a GNN-guided vision transformer, G2ViT, was developed for coronary angiograph segmentation; this
hybrid model enhanced vessel delineation in retinal as well as coronary imaging, which is a crucial step
forward in CAD diagnostics. Similarly, Yao et al. (2023) also performed full-heart and -vessel segmentation
for patients with congenital heart disease using graph-matching networks, thus enabling accurate structural
representation, which is crucial for surgical planning. On the signal processing front, very high-accuracy
ECG signal classification by GNNs has been performed by Duong et al. (2023) and Ashtaiwi et al. (2024).
They combined vectorized ECG images with transformer and CNN modules and thus demonstrated the
advantage of multi-modal GNN fusion. Andayeshgar et al. (2024) improvised ECG graph-based models by
defining the adjacency matrix of weighted mutual information, thus achieving better arrhythmia
classification by aligning it with the physiological coherence between cardiac leads. Population-based
cardiovascular modelling has also been advanced. Lu & Uddin (2021) built a weighted patient similarity
network for chronic disease prediction, achieving >93% accuracy for cardiovascular conditions. Wang et al.
(2024), multi-modal model with LSTM and GNN for time series behavioral data is made, thereby giving an
approach for personalized, dynamic CAD risk prediction. Besides, Rangisetti et al. (2024) proposed a light-
weighted GNN framework for heart disease detection across reference datasets. The framework maintains a
good accuracy with the least computational overhead dueling with most edge-deployable mobile-health
applications. Thease applications establish GNNs as state-of-the-art methods for structural modeling (e.g.,
vessel graphs, anatomical labeling) and functional modeling (e.g., ECG classification, behavioral prediction).
Many more applications relating to branched vascular-like structures hold promise for personalized
medicine, wherein the diagnostics could be tailored to a graphical structure unique to the patient.
2.3 Cloud Deployment of AI in Healthcare
The clinical deployment of AI models requires infrastructure that supports real-time inference, scalability,
and regulatory compliance. Cloud platforms such as AWS, Azure, or Google Cloud AI possess GPU-
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accelerated training environments, scalable inference endpoints, and integrated security features, which
make them suitable for hosting graph-based medical models (Alfurhood, 2024; Lin & Prasanna, 2023). A
full-stack system integrating IoT data streams and Monkey Search-optimized GNN (MS-GNN) was
demonstrated by Alfurhood in 2024. The model was deployed on the cloud infrastructure for real-time
disease detection for multiple diseases, including CAD, with high generalizability and speed. Wong et al.
(2024) developed a hybrid edge-cloud inference engine, combining ECG preprocessing on edge devices
with GNN and Transformer-based inference in the cloud, enabling sub-0.5 second response times. The
system had the local component of ECG pre-processing and the GNN inference and Transformer modules in
the cloud, allowing ultra-fast inference time response (<0.5 seconds) and adequate energy efficiency making
it feasible to be deployed on mobile devices.
Furthermore, models were developed by Tariq et al. (2024) and Raja et al. (2024) with federated cloud
learning to enable privacy-preserving collaboration among institutions. It is especially valuable for the
training of GNNs on sensitive CAD datasets overseas in hospitals, while ensuring compliance with privacy
laws through federated learning, allowing institutions to collaborate without data sharing. Sometimes
considered more of an academic pursuit, the cardiovascular cloud will mature and provide real-time GNNs
for equitably scalable, intelligent cardiovascular care toward hospital information systems integration.
2.4 GNNs on Cloud Infrastructure
Modern GNN frameworks nowadays lend themselves well to distributed and containerized cloud
environments. PyTorch Geometric, DGL, and GraphStorm now provide the capability to be deployed
alongside Kubernetes, TorchServe, and MLflow to present an end-to-end MLOps platform. Lin and
Prasanna (2023) also presented HyScale-GNN-a GNN training system geared for heterogeneous cloud
architectures, providing tremendous throughput improvements with astute GPU memory management. This
system finds its use when presented with numerous patients’ vessel graphs, thus defeating any traditional
approach to on-premises facilities. Gunawan et al. (2024) and Rangisetti et al. (2024) demonstrated the
successful deployment of ultra-light GNN models that, albeit requiring only a meager number of computers,
are able to achieve state-of-the-art classification power. Such models could be deployed either in serverless
environments or on cloud-edge devices to keep operational costs to a minimum while offering maximum
clinical value. These advancements reflect the shift toward cloud-native healthcare AI. GNNs are no longer
just modeling tools but are deployable as services—callable via APIs, integrated into dashboards, and
retrainable on demand. This architecture highly facilitates rapid iteration, clinician feedback loops, and
adaptive personalization.
3. Methodology
3.1 Search Strategy
For a comprehensive study on the cloud-based GNNs for CAD progression, a well-structured, reproducible
methods search was undertaken. The string used was:
("graph neural network" OR "GNN") AND ("coronary artery disease" OR "CAD") AND ("cloud computing"

OR "cloud-deployed" OR "cloud platform") AND (mapping OR "disease progression" OR diagnosis).
This was systematically searched in the scholarly databases of Google Scholar, PubMed, Web of Science,
IEEE Xplore, SpringerLink, and ScienceDirect. The search was limited to 2015-2025, with particular
emphasis on proceedings beyond 2020, given the rapid developments on both fronts of GNN technology and
cloud AI services in the past five years. The initial search returned some 259 candidate publications, all
subjected to a screening process following several steps and in line with the PRISMA guidelines (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses).
3.2 Inclusion Criteria
In the final review, a study could be included if it meets the criteria:
• Any form of graph neural network (e.g., GCN, GAT, MPNN) applied on cardiovascular or CAD-
specific datasets.
• Disease mapping or progression modeling and clinical diagnosis in a coronary setting.
• Cloud-based deployment in training, inference, data management, or federated learning.
• Published by peer journals or conferences and bear a valid DOI or institutional indexing.
• Human subjects or real-world clinical data.
3.3 Exclusion Criteria
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To weed out irrelevant or low-relevance papers, the exclusion criteria were set up. Excluded were papers
that:
• Were based on non-GNN models such as classical CNN or purely statistical frameworks devoid of
graph-based components.
• Deals only with on-premises or local inference without any mention of cloud infrastructure.
• Non-human or theoretical studies with no medical validation.
• Addressed cardiovascular machine learning in general without any specific application to the CAD
progression.
3.4 PRISMA Flowchart
A PRISMA flowchart was used to
provide a pictorial view of the
selection process. Out of 259 records
identified, 150 were duplicated and
removed. Screening of abstracts led to
the exclusion of 68 articles that did not
meet the eligibility criteria. Moreover,
32 full-text articles were selected and
incorporated into the qualitative
synthesis, each evaluated and
discussed in this review.

Figure 2: PRISMA Flow
Diagram for Systematic Review Study
Selection.
3.5 Data Extraction and Synthesis
The AI methods, datasets, and
performance metrics have been
collated from all studies included
(Shiwlani et al. 2024). For each of the
32 studies included in the review, data were extracted using a special framework. The following variables
were,cataloged:
• Study characteristics: Authors, year, study design, dataset, population size.
• Model architecture: What type of GNN would be ideally fitted for the stage under consideration (for
example,GCN,GAT,Transformer-basedGNN)?
• Deployment details: using cloud platforms like AWS, Azure, or private servers, or model serving tools
like TorchServe or TensorFlow Serving, or an edge-cloud hybrid style?
• Evaluation metrics: Accuracy, sensitivity, specificity, AUC, F1-score, inference latency.
• Special features: Interpretability tools, multimodal fusion, data augmentation methods (e.g., SMOTE),
integration with medical imaging or EHR. This data was converted into a narrative and then examined from
a comparative viewpoint across the four major thematic clusters of design: model, application area,
deployment architecture, and performance benchmarks.
Discussion and Results

Table1: Comparison Table: GNN Studies in Cardiovascular and Health AI
Author(s) &

Year
Study Objective Clinical

Context
Input Data

Type
Key Finding Conclusion

Raja et al.
(2024)

Automated
diagnosis &

monitoring of heart
disease using GNN
+ optimization

Heart disease
diagnosis

EHR + IoT
sensor data

GNN with
Leopard Seal
Optimization
improved

classification
in IoT

healthcare.

Effective for
real-time

monitoring with
scalable cloud
deployment.
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Rangisetti et
al. (2024)

Heart disease
detection using

lightweight GNNs

Heart disease
classification

EHR tabular
data

GNN
achieved high
accuracy with

low
computationa

l
requirements.

Suitable for
mobile or edge-

device
deployment in
healthcare.

Shiwlani et
al. (2024)

AI in
neuroeducation
strategies (non-

clinical)

Neuroeducati
on

Educational
data

AI enhances
cognitive and
educational
modeling.

Not directly
relevant to

cardiovascular
GNNs.

Shiwlani,
Kumar &
Qureshi
(2025a)

Use of generative
AI in autoimmune

& infectious
diseases

Autoimmune
diagnostics

EHR
biomarkers

Interpreted
immune data
using AI for
precision
medicine.

Highlights
potential for
advanced

modeling but
not GNN-
specific.

Shiwlani,
Kumar &
Qureshi
(2025b)

AI for pediatric
leukemia

management

Leukemia
(oncology)

EHR, clinical
notes

AI optimized
leukemia
treatment
pathways.

Relevant to
health data
modeling but
not GNN-
based.

Sun &
Zhang
(2024)

CVD risk
prediction using

attention
mechanisms

Cardiovascula
r risk

modeling

EHR, time-
series data

Double-layer
attention
improved
prediction

performance.

Model is not
graph-based but
complements

GNN
approaches.

Sun et al.
(2020)

Disease prediction
using GNNs

Chronic
disease
including
CVD

EHR Validated
GNNs for
disease
modeling
with high
accuracy.

Established
early

foundation for
GNNs in
clinical

prediction.
Tang et al.
(2023)

Predict hospital
readmission using
multimodal GNN

Hospital
readmission
(general)

Chest X-ray,
EHR

Spatiotempor
al GNN
accurately
predicted

readmissions.

Supports GNNs
for multimodal

temporal
medical

prediction.
Tariq et al.
(2024)

MACE risk
prediction in

migraine patients

Cardiovascula
r event risk

EHR + imaging Multimodal
GNN

predicted
MACE risk
effectively.

Demonstrated
cross-disease
GNN utility
with privacy-
preserving
design.

Wang et al.
(2024)

Diagnosis using
candidate-

dependency-aware
GNN framework

Diagnostic
modeling

Structured
diagnostic
features

GRAND
model

improved
diagnostic
precision

with transfer
learning.

Advances
scalable and
transferable

diagnostic GNN
applications.
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4. GNNs in Coronary Artery Disease Mapping
4.1 Graph Representation of CAD
A core strength lies in the representation of complex cardiovascular anatomy and its relation. CAD
progression usually involves spatial, temporal, and functional changes in vessel coronary disposition that are
hard to encode in traditional data formats. At least two studies (Hampe et al., 2024; Beetz et al., 2022)
exploited anatomical graph representations where nodes represented artery segments or bifurcations, and
edges represented topological continuity or blood flow direction.
In functional graphs from imaging biomarkers (plaque burden,
arterial wall thickness), clinical attributes such as LDL-C
levels were considered (Lundström et al., 2023). In other
studies, clinical graphs were made from demographic and EHR
variables to enable relational models of similar patient profiles
(Lu & Uddin, 2021; Wang et al., 2024). These modeling
techniques improve prediction and interpretation, either via
attention mechanisms or inverse-projection (Kwon et al., 2025).

Figure 3: Example of anatomical graph construction from
CCTA images: nodes represent artery segments; edges represent anatomical continuity.
4.2 Model Architectures Used
Diverse GNN architectures have been applied in CAD progression modeling. GCNs were used most
differentially, probably due to their simplicity and efficiency (Gunawan et al., 2024; Lin et al., 2023). Edge-
asymmetric vascular geometries can be modeled with more flexibility using GATs to weigh the importance
of different edges (Duong et al., 2023). Explorations of MPNNs for dynamic modeling of blood flow and
temporal events have been carried out (Beetz et al., 2022). Combined with GNNs, hybrid solutions of CNNs
(for image features) and Transformers (for temporal attention) returned better performance. LGAP, for
instance, combined LSTM and GNN with multi-head attention to model patient time-series data (Wang et al.,
2024) and, similarly, Ashtaiwi et al. (2024) used a VAE + Transformer + EfficientNetB3 pipeline for
classifying ECG-derived images-the trend toward multimodal fusion for GNN-based CAD systems.
4.3 Datasets and Evaluation
Datasets employed in these studies were highly heterogeneous in terms of size, structure, and source. As per
the popular public options, such as UCI Heart Disease, MIMIC III, Framingham Heart Study, and Chapman
ECG, some authors instead used CCTA images from clinical trials or
private hospitals (Hampe et al., 2024; Huang et al., 2022). Performance
metrics were highly consistent across all models. This reinforces the
reliability of GNN-based approaches for CAD.
• In well-balanced datasets, accuracy ranged from 88% to 96% (Imran et
al., 2024; Raja et al., 2024).
• Several GNN-based models had AUC values greater than 0.90 (Lin et
al., 2023; Sun et al., 2023).
• Latency for cloud inference, on the other hand, was less than 1.2
seconds for edge-optimized deployments (Wong et al., 2024).
These sets of performances create a promising scenario for GNNs to
become clinical-grade diagnostic tools, should they be thoroughly trained
and implemented.

5. Cloud-Based Deployment of GNNs
5.1 Deployment Architectures
Deployment of GNNs in the cloud follows a number of architectural
paradigms. Some are based on batch processing methods, where data is
uploaded and processed at set time intervals-this being an ideal situation
for longitudinal risk monitoring (Alfurhood, 2024). Others go for real-time inference pipelines, which are
suited for diagnostic imaging or ECG analysis. Usually, these include Docker containers and TorchServe or
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TensorFlow Serving, with orchestration done through Kubernetes to provide scalable load balancing (Lin &
Prasanna, 2023). More hybrid architectures are coming upon the scene. In these, the initial preprocessing
takes place at the edge (e.g., on ECG devices or hospital servers), and then only the compressed graph
representations are pushed to the cloud for inference. Therefore, this decreases the required bandwidth and
also facilitates privacy compliance with HIPAA and GDPR (Wong et al., 2024).
Figure 4: Architecture of a cloud-deployed Graph Neural Network system for coronary artery disease
progression modeling and diagnosis.
5.2 Cloud Platforms and Services
Training and deploying GNN models has fully been supported on estas platforms:
• Amazon SageMaker integrates directly with PyTorch Geometric and DGL.
• Google Cloud AI Platform provides TPU-accelerated graph learning for real-time CCTA analysis (Hampe
et al., 2024).
• Microsoft Azure ML provides pipelines for end-to-end MLOps for retraining and versioning of models-in
particular useful when updating CAD progression models with new data (Tariq et al., 2024).
According to some studies, private or hospital-managed clouds were used, particularly in countries where
there are stringent laws on data residency. These clouds were often supported by a federated learning layer
to enable generalizability of models across heterogeneous populations.

5.3 Case Studies and Applications
The deployment of Graph Neural Networks (GNNs) in clinical environments is no longer a theoretical
pursuit but a growing area of real-world innovation, with several proof-of-concept implementations and
prototype systems demonstrating the feasibility of cloud-deployed cardiovascular GNN solutions.
A notable application is to label coronary trees automatically from CCTA images.Hampe et al. (2024)
implemented a GNN pipeline to anatomically label regions in the coronary system, e.g., LAD, LCX, or RCA,
based on vessel graph connectivity.The system first converted segmented vessels into graph structures and
then applied node classification GNNs for the automation of anatomical labeling.The model was deployed in
a cloud full-labeled coronary tree retrieval framework with less than 1min of time per patient.This
advancement has resulted in improving radiological workload and increasing the reproducibility of imaging
interpretation. In yet another notable case, Alfurhood (2024) came up with a multimodal MS-GNN system
under which vital data collected by the IoT devices gets assimilated among GNN layers for the classification
of diseases in the area of cardiac, thyroid, and diabetic domains. The system used a cloud-based backend
that processed signals acquired from wearable sensors and then uploads them to a GNN classifier which was
optimized by monkey search algorithms. The establishment has proven to be able to infer from heart
diseases with an accuracy of more than 95% and operate in real time, with a seamless transition from edge-
device sensors to the cloud server. This is an extremely vital implementation for monitoring patients in rural
areas where access to specialists is limited. A hybrid edge-cloud cardiac AI system was first presented by
Wong et al. (2024), who could design an ultra-efficient GNN for cardiac disease detection from edge
devices. The procedure passed ECG-derived features through EfficientNetB3 and Transformer encoders and
fused them in a compact GNN. Containerized microservices were used for deployment, so large amounts of
ECG data could be processed in real-time on the edge, while updates were synchronized with cloud models
for continuous learning and The study emphasized latency optimized and energy-efficient inference time
was reported to be less than 0.5 seconds with CPU load less than 40%, suitable for clinical devices that run
on battery. Similarly, Duong et al. (2023) presented a graph-enhanced ECG classification system using
morphological edge detection-based GNNs. Although mostly tested in the lab, the architecture is inherently
suited for cloud deployment due to modular design. The graph fusion layer performs 1D signal
transformation into spatial feature graphs, which can be GPU-accelerated in servers such as AWS EC2 and
Google Cloud AI platform. Future scaling for hospital-wide deployment is feasible, where streaming of
multiple ECGs occurs simultaneously. From a telemedicine perspective, Tariq et al. (2024) proposed
multimodal GNN for the prediction of major adverse cardiovascular events (MACE) in migraine patients - a
frequently overlooked group in cardiology. Their model transformed EHRs, imaging data, and clinical notes
into graph structures and trained these with GCNs. The deployment was in a federated cloud environment
that preserved patient privacy and enabled generalization across multiple centers. This may provide a
platform for collaborative cardiology across institutions, free from hindrances posed by data silos.
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Another example is that of Lin and Prasanna (2023), who developed HyScale-GNN, a hybrid GNN training
system deployed on single-node heterogeneous cloud servers (CPU+GPU). Though not cardiology-specific,
their infrastructure was designed and optimized to work with graph data at scale, providing a valuable
blueprint for training cardiac models that contain millions of nodes or edges, such as patient-population
graphs or large-scale coronary networks. Also, Wang et al. (2024) applied a LSTM-GNN hybrid architecture
to time-series behavioral and physiological data to predict cardiovascular risk. It involved cloud-based
Transformers analyzing longitudinal health data from wearable devices, linked to lifestyle features such as
sleep, exercise, and diet. This model churned out personalized risk scores available on clinician dashboards
or mobile applications a prototype towards the vision of next-generation digital cardiology. Of note,
Gunawan et al. (2024) showed that even simple GCN architectures could be suited for real-time clinical
systems with high effectiveness. This study involved patient similarity graphs derived from structured
datasets and deployed the model in a low-latency cloud environment, where it reached 93.03% accuracy
with very few compute resources. Lightweight solutions are very useful for emerging health setups seeking
inexpensive and scalable cardiovascular diagnostic tools. Together, these case studies illustrate a paradigm
shift in cardiovascular AI, in which GNNs are no longer and indeed not just academic constructs but cloud-
deployable tools currently being applied—or at least tested—in real-life clinical workflows. They provide
multi-modal, real-time, scalable, and often interpretable decision-making, from helping specialists in tertiary
hospitals to primary care teams operating in decentralized settings. The implementations reviewed strongly
support the claim that cloud-deployed GNNs are a feasible and useful next-generation diagnostic backbone
for mapping and managing coronary artery disease.
6. Comparative Analysis
The development of graph-based learning generated and birthed parallel considerations of classical and deep
learning models in cardiovascular applications. Classical CNNs struggle with artery classification due to
their grid-based limitations, making it difficult to model structures like bifurcations or vascular trees (Beetz
et al., 2022; Hampe et al., 2024). GNNs’ ability to learn from non-Euclidean data provides a major
advantage. This is especially valuable for mapping topological relationships in CAD progression.
CNN-based models of Imran et al. (2024) and Chhikara et al. (2024) yield an accuracy of 89–92%, whereas
GNNs outclassed them with accuracies greater than 95% in the guise of MS-GNN (Alfurhood, 2024) and
hybrid LGAP model (Wang et al., 2024). GNNs further allow relational reasoning to be encoded via patient
inter-similarity (Lu & Uddin, 2021), vessel-tree continuity (Hampe et al., 2024), and behavioral risk patterns
(Wang et al., 2023). From a deployment perspective, cloud-integrated GNNs present great capabilities
Cloud deployment addresses the limitations of local systems, such as limited computing power and
maintenance challenges. It enables online retraining, global distribution, and secure cross-institutional
integration (Lin & Prasanna, 2023; Wong et al., 2024). Hybrid edge-cloud deployments maintain low
latency and high inference accuracy, these capabilities make them preferable to traditional ML pipelines in
clinical settings as pointed by Raja et al. (2024) and Tariq et al. (2024). Therefore, although conventional
models hold ground when it comes to solving small-scale tasks or functioning in constrained environments,
they stand as fundamentally less rich and less scalable in modeling than GNNs, especially when GNNs have
been deployed in the cloud for CAD applications.
Feature GNNs CNNs RNNs Traditional ML
Accuracy High (up to

96%, AUC >
0.90)

Moderate to High Moderate Variable

Modeling Structure Graph topology,
patient
similarity,
vessel
continuity

Grid/Spatial only Sequential only Flat feature space

Multimodal
Integration

Yes (ECG +
CCTA +
Behavior)

Partial (images
only)

Limited Minimal

Cloud Deployment Yes, edge and Feasible but less Rarely Challenging
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cloud supported flexible implemented
Federated Learning Demonstrated

in multiple
studies

Rare Rare Not applicable

Interpretability Emerging,
needs work

Visual filters
available

Black-box Limited

Training
Complexity

High (requires
large memory
& GPUs)

Moderate High Low

Data Efficiency Graph
augmentation
possible

Data-hungry Moderate Variable

Clinical Readiness Promising but
maturing

Good for imaging
tasks

Limited Needs enhancement

Table 2: Comparative Evaluation of GNNs vs. Conventional Models in Cardiovascular Applications.

7. Challenges and Limitations
One notable limitation regards GNNs and their cloud-deployed architecture. A major limitation is the

lack of large, annotated CAD graph datasets WHICH restricts generalizability and hinders model validation.
Several of the surveyed models (e.g., Gunawan et al., 2024; Duong et al., 2023) considered public ECG or
EHR datasets not explicitly structured as graphs, requiring custom methods of graph construction, which
limits their generalizability. Second, cloud deployment faces some regulatory hurdles due to the sensitivity
of medical data and as they are subjected to legislation such as HIPAA, GDPR, and local privacy acts.
Although solutions may involve frameworks for federated learning, greater complexities arise for
synchronization of model training and updates (Wong, et al., 2024; Alfurhood, 2024).

Third, real-time inference latency still hinders performance in high-stake clinical settings. While
hybrid models mitigate load on central servers and thus delay from server-side processing, achieving
consistent sub-second response times across all environments needs extensive rigour testing, which is often
unavailable in academic studies (Lin & Prasanna, 2023). In the fourth place, Explainability in most GNN
applications remains underdeveloped, limiting clinical trust and regulatory acceptance. Even though some
solutions have been proposed through GNN. Explanation and inverse projection learning (Kwon et al.,
2025), the inability to interpret explanations is an impediment toward physician trust and regulatory
approval. Also, the vast majority of GNN architectures remain parser "black boxes" to clinicians, a feature
that prevents their translation into bedside tools. Finally, inequity addresses the disparity in infrastructure
and cost among the great majority of world health systems, with advanced cloud-deployed models are often
inaccessible in low- and middle-income countries (LMICs). This highlights the need for scalable and
inclusive deployment strategies.
8. Future Directions

This domain offers a rich landscape for innovation, where ongoing research can drive substantial
progress in CAD diagnostics. The first challenge is to create open-access cardiovascular graph datasets,
particularly labeled CCTA graphs or ECG similarity networks; The availability of such datasets will
promote systematic research and benchmarking. It will also support the evaluation and standardization of
CAD-GNN models. Consortiums similar to STACOM or PhysioNet could spearhead such initiatives.

Second, federated GNN frameworks allow training across institutions without sharing raw data,
improving privacy while harnessing large-scale learning. The IoT-cloud integrations and behavior-based
graph modeling mentioned by Alfurhood (2024) and Wang et al. (2024) suggest toward such potential.

Third, GNNs harnessed with wearables and mobile health are then areas set to vastly change disease
tracking and population health monitoring. Real-time inference demonstrated by Wong et al. (2024) and
Ashtaiwi et al. (2024) signals the potential of this future where ECG and behavioral data from patients will
flow into graph-based risk engines.
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Fourth is to develop interpretable and clinically validated GNN toolkits, working with regulatory
bodies. Embedding counterfactual reasoning, feature importance maps, and model calibration techniques
could enable the acceptance of GNNs into clinical workflows.

Finally, the advancement of infrastructure - involving serverless graph model deployment, energy-
efficient GNN inference, and edge-native learning algorithms - will ensure equitable and sustainable
integration of GNNs within the various health systems.

Figure 5: Federated GNN training architecture allowing privacy-preserving collaboration across
clinical sites for CAD modeling.
9. Conclusion

Graph Neural Networks (GNNs) advanced by way of a major evolution in the modeling of complex,
relational cardiovascular data, with its subtype modeling representing anatomy of the vessels, patient
similarity, and behavioral dynamics. When these models are deployed on cloud environments, they are
scaled, offered an instantaneous service, and integrated with larger telehealth and IoT ecosystems. In total,
32 articles related to CAD diagnosis-imaging, EHR, ECG, and behavior-driven graph modeling from the
fine works-reviews were synthesized. Evidence confirms that cloud-based GNNs provide superior accuracy,
scalability, and personalization than traditional models. GNNs in conjunction with AWS, Azure, and hybrid
cloud-edge architectures have been shown to be technically doable for various clinical use cases. However,
the field is limited by some critical factors from scarcity of datasets, explainability, and regulatory
challenges to infrastructural ones. Faced with such issues, open datasets, federated learning, and
interpretable AI should be prioritized to advance GNNs from research to real-world clinical implementation.
In conclusion, it offers a promising albeit still maturing paradigm for coronary artery disease progression
mapping by way of cloud-deployed GNNs. With sustained innovation and interdisciplinary collaboration,
the scenario of cardiovascular care might soon be rewritten.
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