
4403

Vol. 2 No. 3 (2025)

Tackling Vancomycin-Resistant Enterococcus faecium in Hospital-
Acquired Infections: Leveraging qPCR and Isothermal Amplification

for vanA Gene Detection

1Department of Biotechnology, University of Malakand, Pakistan
2Institute of Microbiology, University of Veterinary and Animal Sciences

3University of Chinese Academy of Sciences, Beijing, China
4Department of Pharmacology, Jinnah Medical and Dental College, Sohail University

Karachi Pakistan
5Department of Plant Pathology, University of the Punjab, Lahore

ARTICLE INFO:

Keywords:
Vancomycin resistant
bacteria, AMR,
Enterococcus faecium,
qPCR, CRIPSR

Corresponding Author:
Ayaz Ahmad,
University of Chinese
Academy of Sciences,
Beijing China,
ayazmicro0012@gmail.com

Article History:
Published on 22 July 2025

ABSTRACT

Hospital-acquired infections (HAIs) in Enterococcus fecium
(VREfm) are primarily caused by the resistant to vancomycin
vanA gene, which confers high-level resistance to vancomycin.
With an emphasis on quantitative PCR (qPCR) and loop-
mediated isothermal amplification (LAMP) for vanA detection,
this review delves deeply into the epidemiology, molecular
mechanisms, and diagnostic challenges of VREfm. We explore
their applications using case studies, mutation analyses, and
gene prevalence computational data. The benefits and
drawbacks of LAMP and qPCR in clinical contexts are carefully
considered. Two tables provide a summary of vanA mutation
and VREfm prevalence data from recent studies. By combining
data from around the globe to guide infection control and
diagnostic approaches, the review tackles the urgent need to
address the public health threat posed by VREfm. Future
directions like CRISPR-based diagnostics and next-generation
sequencing (NGS) are also explored.
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1. Introduction
Enterococcus fecium, a gram-positive
naturally occurring of the human
gastrointestinal tract, has developed into a
dangerous nosocomial pathogen as a
result of its acquisition of vancomycin
resistance, which is primarily mediated by
the vanA gene cluster on genetic elements
that are mobile such as Tn1546 [1].
Vancomycin-resistant E. faecium (VREfm)
causes severe HAIs, including
bloodstream infections, urinary tract
infections (UTIs), endocarditis, and
surgical site infections, with mortality
rates in immunocompromised patients
ranging from 50% to 73% [2, 3]. When
the vanA gene alters peptidoglycan
precursors, vancomycin loses its binding
affinity and loses its effectiveness [4]. The
WHO has designated VREfm as a high-
priority pathogen due to its extensive
distribution and lack of effective
treatments [5].
Rapid and accurate diagnostics are
necessary to control VREfm outbreaks.
VanA can be quickly intervened in
because it is highly sensitively targeted by
isothermal amplification methods like
LAMP and molecular techniques like
qPCR [6]. This review examines the
epidemiology of VREfm, the mechanisms
of resistance, and the diagnostic utility of
qPCR and LAMP using case studies and
computer modeling information on the
vanA, vanB, esp, and hyl genes. We
provide two targeted tables, a detailed
evaluation of the advantages and
disadvantages of these strategies, and a
discussion of how to apply them to
infection control strategies. The article
aims to provide researchers and clinicians
with a robust framework to address the
growing threat posed by VREfm.

2. Epidemiology of VREfm in Hospital-
Acquired Infections
Particularly in high-risk settings like
intensive care units (ICUs), oncology
wards, and transplant units, VREfm is a
major contributor to HAIs. While
prevalence rates in Europe can reach 50%
in Portugal and 19% in Ireland, VREfm is
the cause of 28.5% of enterococcal
infections in the United States [7].
Between 2012 and 2020, Thailand's rate
rose from 0.7% to 6.9% in Asia due to
hospital transmission [8]. Although it is
underreported in resource-constrained
environments such as sub-Saharan Africa,
the average prevalence of VREfm has
been reported to be 15% in Nigerian
hospitals due to diagnostic limitations [9].
Clonal complex 17 (CC17), which
comprises sequence types (ST) ST80,
ST17, ST117, and ST761, is the
predominant cause of VREfm infections
due to its multidrug resistance and
hospital adaptation [10].
The vanA gene, which is commonly
carried on conjugate plasmids and
facilitates horizontal gene transfer, speeds
up the spread of VREfm [11]. Risk factors
include prolonged hospital stays, devices
that are embedded (like ventilators and
catheters), and prolonged contact with
antibiotics like vancomycin,
cephalosporins, and anti-anaerobic agents
[12]. Environmental contamination, such
as on bedrails and medical equipment,
further perpetuates nosocomial
transmission [13]. According to
surveillance data, 60–80% of cases have
VREfm colonization prior to infection,
highlighting the importance of early
detection [14].
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Table 1: Prevalence of VREfm in
Hospital-Acquired Infections Across
Regions (2015–2023)

Region Study
Period

Sample
Size

VREfm
Prevalence
(%)

Dominant
STs

USA 2015–2020 12,000 28.5 ST17,
ST117

Ireland 2016–2019 8,500 19.0 ST80,
ST761

Portugal 2017–2020 6,200 50.0 ST117,
ST203

Thailand 2012–2020 4,800 6.9
ST17,
ST80,
ST761

Nigeria 2018–2021 2,100 15.0 ST17,
ST412

Note: Data obtained from worldwide
surveillance studies; incidence varies by
hospital type and diagnostic capabilities [7,
8, 9].
3. Molecular Mechanisms of
Vancomycin Resistance
The vanA gene complex, consisting of
seven genes (vanRSHAXYZ) on Tn1546
transposon, is the predominant genetic
determinant of vancomycin resistance in
VREfm [15]. The vanA operon
congenerates D-Ala-D-Lac peptidoglycan
precursors, which exhibit a 1000-fold
lower affinity for vancomycin than native
D-Ala-D-Ala [16]. Expression of vanA is
mediated by the VanS-VanR two-
component system, which senses
vancomycin and induces transcription [17].

Mutations in vanS (e.g., G133D) or vanR
(e.g., T115A), or deletion in vanX (e.g.,
252 bp) can lead to vancomycin-variable
enterococci (VVEfm), that appear
susceptible before treatment, but have the
resistance phenotype again during
antibiotic) [18, 19]. The less prevalent
vanB gene confers low-level resistance
and is associated with Tn1549 [20].
Virulence determinants such as esp
(enterococcal surface protein) and hyl
(hyaluronidase) increase VREfm's
virulence by encouraging biofilm
development and tissue invasion,
respectively [21]. Bioinformatics studies
indicate vanA co-occurs with tetM
(tetracycline resistance) and ermB
(erythromycin resistance) in 60–80% of
strains, signifying multidrug resistance
[22]. WGS research reveals vanA's
genomic flexibility, with plasmids
harboring other resistance genes such as
*aac(6')-aph(2'') (aminoglycoside
resistance) in 50% of VREfm strains [23].

4. Molecular Diagnostics: qPCR and
Isothermal Amplification
4.1 Quantitative PCR (qPCR)
With a detection limit of approximately
100 fg/μL and 100% specificity, qPCR is
the gold standard diagnostic method for
identifying vanA in clinical samples [24].
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It completes assays in one to two hours
and monitors real-time amplification using
fluorescent probes (such as TaqMan) or
SYBR Green [25]. The simultaneous
detection of vanA, vanB, and vanC by
multiplex qPCR assays enhances
diagnostic efficacy in mixed infections
[26]. A qPCR assay for vanA in 500 rectal
swabs was validated in 2020, with 98.7%
sensitivity and 99.2% specificity [27]. In
the assay, a 25 μL reaction was first
denaturated for 4 minutes at 95°C. This
was followed by 35 cycles of denaturation
(95°C, 30 s), annealing (55°C, 1 min), and
extension (72°C, 1 min). The quantitative
results of qPCR are useful for monitoring
the spread of resistance and directing
antibiotic stewardship [28].
4.2 Loop-Mediated Isothermal
Amplification (LAMP)
Using a strand-displacing polymerase and
four to six primers, LAMP amplifies vanA
at a steady 65°C, reaching a sensitivity of
100 pg/μL in 25 minutes [29]. Because it
is isothermal, thermocyclers are not
necessary, which makes it perfect for
point-of-care testing in environments with
limited resources. A LAMP assay for
vanA in 300 urine samples was optimized
in a 2019 study, resulting in 100%
concordance with qPCR and allowing for
visual detection through color change [30].
Rapid screening in outbreak situations is
supported by LAMP's portability and
affordability (reagents ~$1-2 per test),
especially in hospitals with limited
resources [31].
4.3 Pros of qPCR for vanA Detection
Quantitative PCR is widely accepted for
its ability to determine low bacterial loads
in complex clinical samples like blood,
stool, or urine because of its remarkable
sensitivity, which can detect as little as
100 fg/μL of vanA DNA [24]. Clinicians
can evaluate the degree of colonization or
infection and track resistance trends over

time due to its quantitative nature, which
yields precise evaluations of vanA copy
numbers [27]. In situations where
enterococcal populations are diverse,
qPCR's support for multiplex assays,
which concurrently detect multiple
resistance genes (vanA, vanB, and vanC)
in an individual reaction, speeds up
diagnostics and increases efficiency [26].
The approach is dependable for clinical
decision-making and epidemiological
surveillance due to its high specificity
(99–100%), which reduces false positives
[28]. Additionally, qPCR's reproducibility
across labs is guaranteed by its
compatibility with automated systems and
standardized protocols, which increases its
value in hospital networks and extensive
research [32].
4.4 Cons of qPCR for vanA Detection
Despite its advantages, qPCR has serious
disadvantages. The requirement for
expensive thermocyclers (costing across
$20,000 and $50,000) and concentrated
laboratory equipment limits its use in
resource-constrained environments,
particularly in low-income countries
where VREfm prevalence is rising [33].
Because sample preparation, primer
design, and data analysis must be handled
by skilled personnel, the method increases
operational costs and complexity [34].
Because inhibitory samples, like blood
elements or fecal matter, can result in
false negative results, robust DNA
extraction techniques are required [24].
Additionally, the cost of reagents for
regular testing in high-burden
environments may be prohibitive due to
the use of fluorescent dyes or probes in
qPCR, which increase the cost of reagents
by approximately $5 to $10 per test [35].
The need for cold-chain reagent storage
complicates its deployment in remote
areas [36].
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4.5 Pros of LAMP for vanA Detection
LAMP offers a number of advantages for
vanA detection, chief among them being
its accessibility and ease of use. LAMP
can be utilized for testing at the point of
care in hospitals with restricted funds
because it only requires a heat block or
water bath to maintain a constant
temperature of 65°C [29]. Its 25-minute
turnaround time allows for rapid VREfm
identification, which is crucial for
outbreak control [30]. Even untrained staff
can interpret results using LAMP's visual
detection techniques, like color change or
turbidity, without the need for
complicated equipment [31]. The
method's low cost (reagents ~$1-2 per test)
as well as lack of cold-chain demands
make it economically viable for
widespread use in low-resource settings
[37]. The reliability of LAMP for direct
testing from urine or rectal swabs is
increased by its resistance to inhibitors in
clinical samples [38].
4.6 Cons of LAMP for vanA Detection
The main drawback of LAMP is its lower
sensitivity (~100 pg/μL) in comparison to
qPCR, which could lead to missed
detections in samples with low bacterial
loads [29]. Due to the technique's
dependence on four to six primers, assay
design becomes more complex, and there
is a chance that non-specific amplification
will result in false positives in mixed
samples [39]. LAMP's usefulness in
tracking resistance dynamics is limited by
its primarily qualitative nature and lack of
qPCR's quantitative precision [40].
Subjectivity may be introduced by the
method's reliance on visual interpretation,
especially when used by novices or in low
light [31]. Furthermore, LAMP's use in
detecting multiple resistance genes at once
is limited by its inability to readily support
multiplex assays, which is a crucial

requirement in multidrug-resistant VREfm
infections [41].
5. Case Studies and Reports
5.1 Case Study: VREfm Bacteremia
Outbreak in a US Oncology Ward
A VREfm bacteremia outbreak in an
oncology ward was reported by a Boston
tertiary care hospital in 2005 [42].
Bloodstream infections occurred in 15
patients (median age 60, 75%
neutropenic), and 12 isolates had vanA. In
80% of cases, clonal spread (ST17) was
confirmed by pulsed-field gel
electrophoresis (PFGE) [43].
Gastrointestinal colonization (p < 0.001)
and previous vancomycin use (odds ratio
3.8, p = 0.008) were risk factors. By
identifying vanA in 14/15 patients through
qPCR screening of rectal swabs, contact
precautions were able to reduce
transmission by 70% in just four months.
Rapid isolation protocols were supported
by LAMP, which was piloted in five
samples and confirmed vanA in 20
minutes [44].
5.2 Case Study: VVEfm Emergence in
Denmark
A vancomycin-variable E. faecium
(VVEfm) strain (ST1421) was found in 65
patients from four hospitals in a Danish
study conducted in 2018–2019 [45]. The
strain was susceptible to vancomycin
(MIC ≤ 4 mg/L) due to a 252 bp deletion
in vanX. After being exposed to
vancomycin, 25% of isolates showed
reversion to resistance (MIC >256 mg/L)
according to WGS and qPCR, which were
caused by vanS mutations or plasmid
amplification [46]. Bypassing culture
delays, LAMP identified vanA in 93% of
rectal swabs. The diagnostic difficulty of
VVEfm and the importance of molecular
tools in detecting silent vanA carriers are
highlighted by this case [47].
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5.3 Case Study: VREfm Transmission
in Thailand
Eighty VREfm isolates from ICU patients
with UTIs were examined in a 2024 study
conducted in Northeastern Thailand [8].
All isolates carried vanA, tetM, and ermB
and were members of CC17 (ST80, ST17,
and ST761). Within 90 minutes, qPCR
identified vanA in 97% of urine samples,
whereas LAMP reached 94% sensitivity
in 25 minutes. According to genomic
analysis, biofilm formation was correlated
with esp and hyl in 62% and 48% of
isolates, respectively [48]. Over a six-
month period, infection control strategies
informed by molecular diagnostics
decreased the incidence of VREfm by
55% [8].
5.4 Case Study: VREfm in a German
Transplant Unit
50 patients had VREfm colonization, and
22 of them developed bacteremia,
according to a 2021 study conducted in a
German transplant unit [49]. 92% of
isolates had ST117 and vanA detected by
WGS, with 68% having esp co-occurring.
Early isolation was made possible by the
discovery of vanA in 46 out of 50 patients
through qPCR screening of stool samples.
Within 30 minutes, LAMP verified vanA
in 12 cases, showing 100% concordance
with qPCR. Routine molecular screening
was predicted by computational modeling
to reduce transmission by 35% [50].
6. Computational Data: Gene
Mutations and Diagnostic Targets
Critical information about resistance
mechanisms and potential diagnostic
targets is obtained through computational
analyses of vanA and related genes. VanA
mutations in vanS (G133D, 12%) and
vanR (T115A, 9%), linked to increased
MICs (>512 mg/L), were found in 2,500
VREfm genomes sequenced in 2023 [51].
By increasing promoter activity, these
mutations increase the synthesis of D-Ala-

D-Lac. VVEfm phenotypes are associated
with the vanX 252 bp deletion, which is
found in 6% of isolates [45]. Treatment
becomes more difficult when vanA co-
occurs with esp and hyl, as this is
associated with increased virulence [52].
Table 2: Computational Analysis of
vanAMutations in VREfm (2020–2023)

Mutation Gene Frequency
(%)

Impact on
MIC
(mg/L)

Diagnostic
Target Reference

G133D vanS 12.0 >512 qPCR,
LAMP [51]

T115A vanR 9.0 >256 qPCR [51]

252 bp
deletion vanX 6.0 ≤4

(VVEfm)
qPCR,
LAMP [45]

Promoter
SNPs vanA 14.0 >512 qPCR [52]

Note: Prokka and FastTree were used to
identify mutations in 2,500 VREfm
genomes [53, 54].
Clonal dissemination is supported by the
findings of a FastTree phylogenetic
analysis, which showed that ST17 and
ST117 form separate clades with high
vanA prevalence [54]. Based on plasmid
and transposon signatures, machine
learning models trained on the
Comprehensive Antibiotic Resistance
Database (CARD) have a 93% accuracy
rate in predicting the presence of vanA
[55]. The slight diagnostic advantage of
qPCR was confirmed by receiver
operating characteristic (ROC) curves
from a 2022 meta-analysis (n = 4,500
samples), which showed that the area
under the curve (AUC) for qPCR was 0.99
and that of LAMP was 0.97 for vanA
detection [56].
7. Clinical and Infection Control
Implications
For quick VREfm identification that
shortens the time needed for isolation and
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treatment, molecular diagnostics such as
qPCR and LAMP are essential. The
portability of LAMP facilitates outbreak
management in environments with limited
resources, while the quantitative precision
of qPCR helps track low-level carriers
[57]. According to a 2022 study, qPCR-
based screening reduced VREfm
transmission in intensive care units by
45% [58]. The high cost of qPCR and the
complexity of primer design for LAMP
present challenges that could restrict
scalability [59]. Diagnostic workflows
could be improved by combining the two
techniques—qPCR in centralized labs and
LAMP in field settings.
8. Future Directions
While NGS finds new resistance
determinants, emerging technologies like
CRISPR-based diagnostics (e.g.,
SHERLOCK) provide single-molecule
sensitivity for vanA detection [60]. When
combined with resistome databases,
machine learning models have the
potential to forecast VREfm outbreaks
with greater than 90% accuracy [61].
Point-of-care diagnostics may be
improved by creating multiplex LAMP
assays for vanA, vanB, and virulence
genes (e.g., hyl). Addressing the changing
resistance patterns of VREfm will require
standardizing procedures across
international healthcare systems [62].
9. Conclusion
Due to clonal spread and vanA-mediated
resistance, VREfm is still a dangerous
nosocomial pathogen. LAMP and qPCR
provide complementary diagnostic
solutions; LAMP is more accessible,
while qPCR is more sensitive.
Computational data and case studies
demonstrate their influence on patient
outcomes and outbreak control.
Healthcare systems can lessen the
worldwide burden of VREfm by utilizing
emerging technologies and incorporating

these tools into infection control
frameworks. Staying ahead of this
changing threat requires ongoing research
into the mechanisms of resistance and
diagnostic advancements.
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