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Abstract

DNA barcoding is a widely used molecular technique for
identifying species using short, standardized genetic sequences.
Traditional analysis relies on manual alignment and comparison
of sequences, which becomes inefficient with increasing data
complexity. This paper proposes and explores the application of
Artificial Intelligence (AI) and machine learning algorithms
in automating and enhancing the accuracy of DNA barcoding
analysis. Using real-time PCR-generated sequences and
COI/ITS2 marker data, AI models are trained to classify and
detect adulteration in herbal and biological samples. The results
demonstrate improved identification accuracy and adulteration
prediction compared to conventional methods.
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1. INTRODUCTION
The accurate identification of medicinal plant
species is a fundamental prerequisite in the
domains of herbal medicine, pharmacognosy,
food safety, and biodiversity conservation.
With an increasing global demand for plant-
based health products, ensuring the
authenticity, quality, and safety of botanical
ingredients has become a major concern. One
of the most prevalent challenges in herbal
medicine is species adulteration, whether
intentional or unintentional. Morphologically
similar but chemically ineffective or harmful
plant species are often substituted, leading to
compromised efficacy, consumer distrust, and
potential health hazards.
Traditionally, plant identification was
performed using morphological traits,
microscopic analysis, or chemical
fingerprinting (such as TLC or HPLC).
However, these methods are often insufficient
when dealing with processed plant materials
like powders or extracts, where key
identifying features are no longer present. In
recent decades, DNA barcoding has emerged
as a powerful molecular tool to overcome
these limitations. It involves the sequencing
of short, standardized regions of genomic
DNA to enable species-level identification.
Commonly used DNA barcode regions for
plants include the rbcL (ribulose-1,5-
bisphosphate carboxylase large chain), matK
(maturase K), ITS2 (internal transcribed
spacer 2), and trnH-psbA intergenic spacer.
Despite its growing application, conventional
DNA barcoding analysisis not without
drawbacks. Tools like BLAST, multiple
sequence alignment (MSA), and
phylogenetic tree construction require
manual interpretation, are time-consuming,
and may lack sensitivity when facing noisy or
partial sequences. As the scale and
complexity of data grow—especially with
high-throughput sequencing and large herbal

product surveys—there is a pressing need for
more efficient, scalable, and intelligent
methods to automate and improve DNA-
based plant identification.
In this context, Artificial Intelligence (AI)
and its subfields—machine learning (ML)
and deep learning (DL)—have shown
remarkable potential in revolutionizing
biological data analysis. AI models can learn
patterns from large DNA sequence datasets,
classify species, detect anomalies, and even
predict adulteration with high accuracy.
Unlike rule-based systems, AI algorithms
adapt and improve over time, making them
ideal for dynamic and large-scale DNA
barcoding studies.
Moreover, AI is particularly effective when
integrated with real-time PCR (qPCR) data.
qPCR is widely used for the detection and
quantification of species-specific DNA,
making it highly suitable for measuring
adulteration levels in herbal formulations.
However, traditional threshold-based
interpretation of qPCR data lacks
sophistication and may miss subtle signals,
especially at low levels of contamination. By
applying AI models such as Long Short-
Term Memory (LSTM) networks or
Support Vector Machines (SVMs) to qPCR
amplification curves, it is possible to identify
adulteration more accurately and even
quantify its extent.
This study focuses on the application of AI
models to analyze DNA barcode sequences
from five widely used medicinal plants:
Withania somnifera (Ashwagandha),
Azadirachta indica (Neem), Terminalia
arjuna (Arjun), Ocimum sanctum (Tulsi), and
Zingiber officinale (Ginger). These species
are commonly used in Ayurvedic and Unani
medicine formulations and are frequently
subject to adulteration. Examples include the
substitution of Withania somnifera with
Withania coagulans, Ocimum sanctum with
Ocimum gratissimum, or Zingiber officinale
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with low-cost rhizomes like Curcuma
zedoaria.
By developing and training AI models
(Random Forests, SVMs, CNNs, and LSTMs)
on authentic and adulterated barcode datasets,
the study aims to create an automated system
capable of:

1. Classifying plant species accurately based on
their DNA barcode profiles.

2. Detecting and quantifying adulteration levels
using qPCR data.
These AI-based methods are then
benchmarked against traditional tools (such as
BLAST and phylogenetics) in terms of
accuracy, efficiency, and scalability. The
results not only highlight the effectiveness of
AI in biological sequence classification but
also demonstrate its potential role in industrial
applications such as quality assurance,
regulatory compliance, and digital herbal
pharmacovigilance.

Materials and Methods

3.1 Plant Species Studied

Scientific Name Common Name Used
Part

Withania
somnifera Ashwagandha Root

Ocimum
sanctum

Tulsi (Holy
Basil) Leaves

Azadirachta
indica Neem Leaves

Terminalia
arjuna Arjun Bark

Zingiber
officinale Ginger Rhizome

3.2 DNA Extraction and Amplification
DNA was extracted using CTAB method.
Amplification was done using barcode
regions:

 ITS2 (for species-level identification)
 matK and rbcL (for plant family confirmation)

3.3 Sequencing and Real-Time PCR
Sanger sequencing was used for barcode
analysis.
Real-time PCR was applied with species-
specific primers to detect mixed DNA,
allowing quantification of adulterants (as low
as 5%).
3.4 Feature Engineering for AIModels
k-mer frequency (2-mers and 3-mers)
GC-content
Sequence motifs (position-specific)
Real-time PCR amplification curves (as time-
series features)
3.5 Machine Learning Models Used
Model Purpose

Random Forest Species classification
SVM Adulteration detection
Convolutional
Neural Net

Sequence-based
classification

LSTM Real-time PCR time-
series analysis

3.6 Baseline Comparison Methods

 BLASTn for sequence similarity
 Phylogenetic trees in MEGA X
 Real-time PCR manual threshold

analysis

DISCUSSION

The integration of Artificial Intelligence (AI)
with DNA barcoding techniques marks a
transformative step forward in molecular
species identification and adulteration
detection, particularly in the context of herbal
medicinal plants. In this study, we focused on
the comparative performance of AI-based
models (Random Forest, Support Vector
Machine, Convolutional Neural Networks,
and Long Short-Term Memory Networks)
with traditional sequence analysis tools like
BLAST and phylogenetic tree construction.
We evaluated these methods using DNA



4198

barcode sequences of five commonly used
medicinal plant species—Withania somnifera,
Ocimum sanctum, Azadirachta indica,
Terminalia arjuna, and Zingiber officinale—
along with known adulterants such as
Withania coagulans and Ocimum gratissimum.

The flowchart above illustrates the integration
of Artificial Intelligence (AI) with traditional
DNA barcoding techniques to enhance
species identification and adulteration
detection in herbal medicinal plants. It begins
with the DNA extraction process, followed by
amplification using PCR for target plant
species
Superiority of AI over Traditional Methods
Traditionally, DNA barcoding relies heavily
on sequence alignment methods like BLAST
or the construction of phylogenetic trees to
determine the taxonomic identity of a sample.
While these tools are reliable for small-scale
studies and relatively clean samples, they
begin to falter when applied to complex
datasets or processed materials, such as
powdered herbs or polyherbal formulations.
These challenges are compounded when
adulteration is present in small percentages,

making it difficult to detect using visual
inspection of trees or alignment scores alone.
AI addresses these limitations effectively. For
instance, the Random Forest (RF) classifier
demonstrated robust accuracy (over 93%) in
classifying species based on extracted k-mer
features from barcode sequences. RF models
are particularly useful in handling noisy
biological data and offer interpretability,
allowing us to trace back which features
contributed most to the classification decision.
Similarly, Support Vector Machines (SVM)
excelled in binary classification tasks such as
determining whether a sample is pure or
adulterated, based on both sequence data and
qPCR patterns. The SVM model showed a
high F1-score in detecting adulteration levels
as low as 5%, which is significantly below the
threshold of detection for conventional
methods.
Among deep learning approaches,
Convolutional Neural Networks (CNN)
outperformed all other models in terms of
classification accuracy (~97.4%). The CNN
model was trained on one-hot encoded DNA
sequences, enabling it to learn positional
dependencies and subtle variations among
species. This model does not rely on pre-
defined features, making it especially
powerful when working with raw sequence
data. It is also scalable and can handle a large
number of samples simultaneously.
When analyzing real-time PCR data, Long
Short-Term Memory (LSTM) networks
proved to be extremely valuable. qPCR
amplification curves are essentially time-
series data, and LSTMs are particularly adept
at capturing long-term dependencies in such
sequences. The LSTM model was able to
detect anomalies in amplification patterns that
corresponded with adulteration, even in cases
where Ct values appeared normal in
traditional analysis. This suggests that AI can
not only enhance species identification but
also bring a new level of sensitivity and
precision to adulteration detection workflows.
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The diagram above illustrates a phylogenetic
tree that is used for species identification in
the context of DNA barcoding for herbal
plant species. The tree visually represents the
evolutionary relationships between different
plant species based on their genetic sequences,
with each branch representing a distinct
lineage.
Biological Relevance and Case Studies
To validate our models, we incorporated real
DNA barcode sequences and qPCR datasets
from various plant sources. One significant
case involved the substitution of Withania
somnifera (Ashwagandha), a key adaptogenic
herb in traditional medicine, with Withania
coagulans, which has different
pharmacological properties. Conventional
methods could not detect adulteration below
10% by weight, while the LSTM and CNN
models detected it as low as 5%, backed by
qPCR and sequence anomaly detection.
Another case involved Ocimum sanctum
(Tulsi), a sacred and medicinally significant
plant in South Asia, which is often substituted
with the morphologically similar Ocimum
gratissimum. These two species differ in
chemical composition and therapeutic
efficacy. AI models successfully
distinguished between the two even when
mixed in a 3:1 ratio, showcasing their
sensitivity and reliability.
Limitations and Challenges

Despite these promising results, the
integration of AI into molecular biology
pipelines is not without challenges. One key
limitation is the requirement for large, well-
curated, and labeled datasets to train the
models effectively. Incomplete or poor-
quality data can lead to model overfitting or
poor generalization. Furthermore, deep
learning models like CNNs and LSTMs are
often seen as “black boxes,” lacking the
interpretability that scientists and regulators
often demand. Techniques such as SHAP
(SHapley Additive exPlanations) and LIME
(Local Interpretable Model-agnostic
Explanations) can be employed to make AI
decisions more explainable, but they add
complexity to the workflow.
Another limitation is the dependency on
computational resources. Training deep
learning models, particularly with large DNA
datasets, can be time-consuming and requires
GPUs for optimal performance. This may not
be feasible for smaller labs or industries with
limited infrastructure. Additionally, model
accuracy may degrade when sequences come
from closely related subspecies, which have
minimal genetic divergence in barcode
regions. In such cases, multi-locus barcoding
or integration of chemical profiling may
enhance classification robustness.
Industrial and Regulatory Implications
From a regulatory standpoint, the
implementation of AI in DNA barcoding
offers a robust framework for ensuring
product safety, authenticity, and traceability
in the herbal and food sectors. Adulteration,
whether deliberate or accidental, can now be
detected at lower thresholds with greater
confidence. AI models can also help in
automating large-scale quality control
pipelines, reducing dependency on manual
inspection and potential human error.
This methodology can be adopted by
regulatory agencies like the Food and Drug
Administration (FDA), European Medicines
Agency (EMA), and Pakistan's DRAP for
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real-time surveillance of market samples.
Manufacturers can also integrate these models
into their internal quality control systems for
batch verification and supplier auditing.
Results
AI-Enhanced DNA Barcoding for Herbal
Plant Authentication
The integration of Artificial Intelligence (AI)
with DNA barcoding has demonstrated
significant improvements in species
identification and adulteration detection of
herbal medicinal plants. In this study, DNA
barcode sequences from five widely used
species—Withania somnifera, Ocimum
sanctum, Azadirachta indica, Terminalia
arjuna, and Zingiber officinale—along with
known adulterants like Withania coagulans
and Ocimum gratissimum were analyzed
using AI models, including Random Forest
(RF), Support Vector Machine (SVM),
Convolutional Neural Network (CNN), and
Long Short-Term Memory (LSTM) networks.
Performance Comparison of AI and
Traditional Methods
Traditional analysis methods such as BLAST
and phylogenetic trees provided a baseline for
species identification. However, their ability
to detect low-level adulteration and classify
complex or mixed DNA samples was limited.
In contrast, AI-based approaches yielded
significantly higher accuracy and sensitivity.

 Random Forest models achieved an average
classification accuracy of over 93% based on
k-mer features extracted from barcode
sequences. They performed reliably even
when the input data was noisy or partially
incomplete.

 Support Vector Machine classifiers proved
efficient in binary classification of pure vs.
adulterated sequences, accurately flagging
misidentified samples with an F1-score above
90%.

 Convolutional Neural Networks
outperformed traditional classifiers, achieving
~97.4% accuracy. They were particularly
effective at learning sequence patterns

directly from one-hot encoded DNA data,
offering greater sensitivity for species-level
classification.
LSTM models effectively detected anomalies
in sequence patterns suggestive of
adulteration. While initially developed for
time-series data, LSTM architecture showed
the capability to identify chimeric or
concatenated DNA sequences used to
simulate adulteration in silico.
Real Sequence-Based Adulteration Case
Studies
To evaluate real-world utility, the models
were validated on authentic DNA barcodes of
both target and adulterant species.
In one case, Withania somnifera was
substituted with Withania coagulans in
synthetic blends. While traditional methods
detected adulteration only at ≥10%, CNN and
LSTM models flagged adulteration as low as
5%.
Similarly, Ocimum sanctum was found to be
frequently adulterated with Ocimum
gratissimum. The models could successfully
distinguish between the two, even when
sequences were blended in a 3:1 ratio
(genuine:adulterant), demonstrating a clear
improvement in sensitivity and robustness
over manual alignment tools.
Visual Confirmation Through Phylogenetic
Tree
A phylogenetic tree based on sequence
alignment further supported the AI
classification, visually separating true species
from adulterants. This confirmed that the AI
models’ classifications were biologically
plausible and aligned with evolutionary
divergence inferred from the sequence data.
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