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Abstract: 

Eisenbergiella tayi is a pathogen that affects the oral cavity, gastrointestinal tract, skin, and 

vagina, and shows some resistance to existing antibiotics. Identifying new antibiotic targets 

through computational methods could expedite the process. At the same time, there are 

numerous opportunities to develop new antibiotics to address infections caused by this 

pathogen. In this study, the proteome of E. tayi was progressively reduced to pinpoint potential 

antibiotic targets. The main goals were to identify proteins that are non-redundant, unique to 

the pathogen, essential, located in the cytoplasm, and associated with virulence and resistance. 

The druggability of these proteins was assessed using the BLASTp tool from the DrugBank 

mailto:imranmalik8182@gmail.com
mailto:rouqiyabatool5@gmail.com
mailto:Faisal.abbas.joyia512@gmail.com
mailto:kausarperveen408@gmail.com
mailto:yousufaslam5214@gmail.com
mailto:imranmalik8182@gmail.com


 
 

595 
 

database against FDA-approved drugs. The study found that the core proteome of the pathogen 

consists of 6,044 proteins. Of these, 2,598 were identified as non-homologous to human 

proteins, and 1,169 were deemed essential to the pathogen. Sub-cellular localization revealed 

that 594 proteins are cytoplasmic, with 76 being selected as virulent. Metabolic pathway 

analysis linked 32 proteins to unique pathogen-specific pathways and identified six as 

druggable. Further analysis highlighted the “argD” protein as both resistant and a promising 

target for future drug development. These results could lay the groundwork for creating new 

antibiotics to combat E. tayi infections. 

Keywords: Eisenbergiella tayi, subtractive proteomics, drug targets, metabolic pathways, 

argD 
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Introduction: 

Eisenbergiella tayi as anaerobic bacteria constitute an intrinsic part of the human microbial 

biota (Lobo, Jenkins et al. 2013), although culture-independent molecular methods have added 

more knowledge about the bacterial richness of human associated environments such as the 

mouth, gut, skin and vagina (Dethlefsen, McFall-Ngai et al. 2007). Eisenbergiella gen. nov. 

was proposed in 2014 to describe an obligate anaerobic, structurally Gram-positive but Gram-

stain-negative-appearing bacillus recovered from the blood culture of an elderly Israeli man 

(Bernard, Burdz et al. 2017) including this a novel strain of a Gram-stain negative, non-motile, 

non-spore forming rod-shaped, obligate anaerobic bacterium, designated AT11T, was isolated 

from a stool sample of a morbidly obese woman living in Marseille, France. This bacterium 

was characterized using biochemical, chemotaxonomic, and phylogenetic methods (Togo, 

Diop et al. 2018). Characterization of a total of eight isolates which were closest to E. tayi took 

place by using molecular identification and other methods. Two of these strains were described 

upon receipt as Gram-positive-staining and the remaining 6 isolates as Gram-negative-staining 

forms (Bernard, Burdz et al. 2017). Phenotypic characterization of the another strain B086562T 

was carried out using standard methods, as recommended in the Wadsworth manual using 

trypticase yeast extract haemin (TYH) broth for fermentation reactions (Choi, Kim et al. 2019). 

The E. tayi reference strain NML 110608 proteome data was obtained from the Universal 

Protein Resource Knowledgebase (UniProtKB)(Boutet, Lieberherr et al. 2016). CD-HIT suite 

(Huang, Niu et al. 2010) was applied to reveal redundant proteins in the proteome and BLASTp 

(Lavigne, Seto et al. 2008) against human proteome was performed to remove homologous 

protein sequences in non-redundant proteins at a threshold expectation value. To obtain 

essential proteins, Database of Essential Genes (DEG) (Luo, Lin et al. 2021) was used. The 

final set of non-homologous essential proteins was subjected to PSORTb (Yu, Wagner et al. 

2010) and CELLO (Bernstein, Ma et al. 2021). For better understanding of essential 

cytoplasmic proteins as possible drug targets, their sequences were subjected to BLASTp 

search of Virulent Factor Database (VFDB)(Liu, Zheng et al. 2022). Virulent proteins were 

mapped to pathogen metabolic pathways using KEGG Automatic Annotation Server 

(KAAS)(Moriya, Itoh et al. 2005). The unique metabolic pathway proteins were further 

unveiled for drugability through DrugBank (Wishart, Feunang et al. 2018). selected druggable 

https://www.sciencedirect.com/topics/immunology-and-microbiology/bacilli


 
 

597 
 

proteins were evaluated for molecular weight calculation using Expasy ProParam tool 

(Gasteiger, Hoogland et al. 2005). Antibiotic Resistance Database (ARDB) (McArthur, 

Waglechner et al. 2013) and Comprehensive Antibiotic Resistant Database (CARD) 

(McArthur, Waglechner et al. 2013) were used to disclose resistant targets.  

Gut microbiota and diet are believed to be associated with the pathogenesis and development 

of inflammatory bowel disease (IBD). Our study investigated the differences in gut microbiota 

and dietary factors between Chinses IBD patients and their cohabitating family member 

controls (Choi, Kim et al. 2019). Over time, individuals with obesity show pathological 

changes in multiple organs, e.g., liver, muscle, and even the brain. Studies have shown that 

obesity is closely associated with metabolic disorders, including hyperglycaemia, insulin 

resistance, dyslipidemia, hypertension (Tian, Wu et al. 2022). A high-fat diet (HFD) induces 

gut microbiota (GM) disorders, leading to intestinal barrier dysfunction and inflammation and 

Eisenbergiella  Tayi produces major metabolites, eg, butyric acid, acetic acid, lactic acid, and 

succinic acid (Tian, Geng et al. 2022). Characterization of a previously annotated GUS 

from Eisenbergiella tayi took place and demonstrated that it is, in fact, a GalAse. We 

determined the crystal structure of this GalAse, identified the key residue that confers GalAse 

activity, and convert this GalAse into a GUS by mutating a single residue (Liu, Zheng et al. 

2022). The protein identified in reference strain NML 110608 is well conserved among other 

sequenced proteomes of E. tayi (DSM26961, NML 120489, NML 150140-1). Only 

acetylornithine aminotransferase (argD) protein has BLASTp hit against PDB search. Target 

selection generally implies finding a significant therapeutic agent (Knowles and Gromo 2003). 

Proper target identification suggests the relationship between drug and disease, which can be 

further analyzed for possible side effects (Hughes, Rees et al. 2011). ArgD is a member of arg8 

protein family. ARG8 encodes acetylornithine aminotransferase, a mitochondrial 

matrix enzyme that catalyzes the fourth step in the biosynthesis of ornithine (Jauniaux, 

Urrestarazu et al. 1978), an intermediate in arginine biosynthesis. Arg8p is 68% identical to the 

acetylornithine aminotransferase from Kluyveromyces lactis, and the K. lactis gene can 

complement an S. cerevisiae arg8 mutant (Janssen and Chen 1998) . Arg8p is also similar to 

E. coli ArgD (Heimberg, Boyen et al. 1990). Like other genes encoding arginine biosynthetic 

https://www.yeastgenome.org/locus/S000005500
https://www.yeastgenome.org/go/3992
https://www.yeastgenome.org/go/5759
https://www.yeastgenome.org/go/5759
https://www.yeastgenome.org/go/6592
https://www.yeastgenome.org/go/6526
https://www.yeastgenome.org/locus/S000005500
https://www.yeastgenome.org/locus/S000005500
https://www.yeastgenome.org/locus/S000005500
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enzymes, ARG8 is transcriptionally repressed in the presence of arginine and is regulated by 

general amino acid control (Messenguy 1987). 
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Fig. 1. Schematic flow for prediction of potential drug targets against E. tayi 

2. Materials and methods 

2.1. Complete proteome retrieval  

The E. tayi reference strain NML 110608 proteome data was obtained from the Universal 

Protein Resource Knowledgebase (UniProtKB)(Boutet, Lieberherr et al. 2016). Additionally, 

the proteomes of three other fully sequenced strains—DSM, CYPM1, and AOUC—were 

retrieved from the GenBank database at the National Center for Biotechnology Information 

(NCBI). This expanded dataset enabled a comprehensive comparison and analysis across 

multiple strains, enhancing the robustness of the study and facilitating the identification of 

conserved and strain-specific features.  

2.2. Eliminating redundant proteins  

CD-HIT suite (Huang, Niu et al. 2010) was utilized to identify redundant proteins within the 

proteome of E. tayi. The complete proteome was input into the CD-HIT suite with a sequence 

identity cutoff set at 80%, while all other parameters were maintained at their default settings. 

This approach facilitated the removal of redundant sequences, allowing for a more refined and 

non-redundant dataset for subsequent analyses. 

2.3. Removal of homologous proteins 

 BLASTp (Lavigne, Seto et al. 2008) search against the human proteome was conducted to 

eliminate homologous protein sequences from the non-redundant proteins. This analysis was 

performed using a threshold expectation value (E-value) of 10^−3, with sequence identity and 

bit score cut-offs set at ≤30% and 100, respectively. These criteria ensured the exclusion of 

proteins with significant similarity to human proteins, focusing on those less likely to induce 

cross-reactivity or adverse effects in therapeutic contexts. 

2.4. Identifying essential proteins  

To obtain essential proteins, Database of Essential Genes (DEG) (Luo, Lin et al. 2021) was 

employed to identify essential proteins among the host non-homologous proteins. For this 

analysis, the minimum sequence identity threshold was set at ≥30%, and the bit score threshold 
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was established at ≥100. These criteria were applied to ensure the selection of proteins with 

significant similarity and reliability in their essential roles. 

2.5. Sub-cellular localization assessment  

The final set of non-homologous essential proteins was subjected to PSORTb (Yu, Wagner et 

al. 2010) , CELLO (Bernstein, Ma et al. 2021) and CELLO2GO (Yu, Cheng et al. 2014) . 

Proteins consistently predicted as cytoplasmic across all three analytical tools were designated 

as potential drug targets. This consistent prediction underscores their suitability for targeting, 

as cytoplasmic proteins are generally more accessible for drug interactions compared to those 

in other cellular compartments. 

2.6. Prediction of virulent proteins  

For better understanding of essential cytoplasmic proteins as possible drug targets, their 

sequences were subjected to BLASTp search of Virulent Factor Database (VFDB)(Liu, Zheng 

et al. 2022). Proteins exhibiting a sequence identity of ≥30% and a bit score of ≥100 were 

classified as virulent and selected for further analysis. This threshold ensured the inclusion of 

proteins with significant similarities to known virulence factors, thus prioritizing those with a 

higher likelihood of contributing to pathogenicity and offering potential as drug targets (Gupta, 

Pradhan et al. 2017). 

2.7. Metabolic pathways analysis  

Virulent proteins were mapped to pathogen metabolic pathways using KEGG Automatic 

Annotation Server (KAAS)(Moriya, Itoh et al. 2005). Proteins specific to bacterial pathways 

were categorized as unique, whereas those shared between humans and bacteria were classified 

as common and thus excluded from further consideration. This distinction ensures that the 

focus remains on targets that are unique to the pathogen, thereby minimizing the risk of off-

target effects and enhancing the potential efficacy of therapeutic interventions (Ahmad, Raza 

et al. 2017, Gupta, Pradhan et al. 2017). 

2.8. Drugability potential of unique proteins  

The proteins involved in unique metabolic pathways were further assessed for their 

druggability by querying the DrugBank database (Wishart, Feunang et al. 2018). This 

evaluation aimed to identify potential interactions with known drugs and assess the feasibility 

of targeting these proteins for therapeutic development, focusing on their capacity to bind drug-
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like compounds and their relevance in drug discovery with bit score set to ≥100 (Sanober, 

Ahmad et al. 2017). 

2.9. Molecular weight estimation  

The selected druggable proteins were evaluated for their molecular weight using the Expasy 

ProParam tool (Gasteiger, Hoogland et al. 2005). This analysis is essential for characterizing 

the proteins and ensuring their suitability for further drug development studies, as molecular 

weight can impact protein behavior, purification processes, and potential interactions with 

therapeutic compounds. 

2.10. Resistance analysis  

The prevalence of antibiotic resistance genes in bacterial genomes has been significantly 

exacerbated by the widespread use of new drugs. This high distribution of resistance genes 

contributes to the growing challenge of combating bacterial infections, as these genes facilitate 

the bacteria's ability to evade the effects of antimicrobial agents, leading to increased treatment 

failures and the need for novel therapeutic strategies (Lock and Harry 2008). Therefore, 

Antibiotic Resistance Database (ARDB) (McArthur, Waglechner et al. 2013) and 

Comprehensive Antibiotic Resistant Database (CARD) (McArthur, Waglechner et al. 2013) 

were used to disclose resistant targets.  

2.11. Structure prediction  

The proteins selected as potential antibiotic targets were evaluated for the availability of their 

experimental three-dimensional (3D) structures. This assessment is crucial for facilitating 

further computational studies, such as molecular docking and dynamics simulations, which are 

essential for understanding protein-drug interactions and optimizing drug design. For this 

purpose, BLASTp was performed against Protein Data Bank (PDB) (Laskowski, Hutchinson 

et al. 1997). In absence of experimental 3D structure, Phyre 2 (Kelley, Mezulis et al. 2015) was 

used to model the target protein structure. 
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Result 

Given the escalating issue of multi-drug resistance in E. tayi, the development of new 

therapeutics has become critically important. This study was designed to identify novel 

therapeutic targets that could be instrumental in developing effective treatments against *E. 

tayi*-associated infections. The number of proteins shortlisted at each phase of the study is 

illustrated in Figure 2, highlighting the rigorous selection process and the identification of 

promising targets for drug development. 

 

Fig. 2. Summary of the screened proteins obtained at the end of each step of subtractive 

proteomics 

3.1. Eliminating redundant proteins  
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CD-HIT analysis identified 6,044 proteins as non-redundant in the proteome of the reference 

strain HI4320. These proteins were selected for subsequent analyses due to their higher 

conservation across strains, which enhances the likelihood of developing broad-spectrum 

antibiotics. In contrast, redundant proteins, which are specific to particular strains, were 

excluded from further consideration to avoid targeting proteins with limited applicability and 

to focus on those with broader relevance (Sanober, Ahmad et al. 2017). 

3.2. Removal of homologous proteins  

To eliminate host-homologous proteins from the non-redundant proteome, a BLASTp search 

was conducted against the human proteome, resulting in the identification of 2,598 proteins as 

host non-homologous. Proteins classified as host non-homologous are less likely to elicit 

autoimmune reactions, reducing the risk of adverse effects in therapeutic applications. This 

refinement step is crucial for ensuring the specificity and safety of potential drug targets by 

minimizing cross-reactivity with host proteins (Naz, Awan et al. 2015) 

3.3. Identification of essential proteins  

Essential proteins are vital for sustaining cellular life and comprise a minimal set of proteins 

necessary for life (Zhang, Ou et al. 2004). A BLASTp search against the Database of Essential 

Genes identified 1,169 proteins as essential and 1,429 proteins as non-essential. Given that 

essential proteins are pivotal in regulating critical mechanisms such as nutrient acquisition, 

virulence, and pathogenicity, they present as highly promising candidates for drug 

development. Targeting these essential proteins could effectively disrupt key processes vital 

for the pathogen's survival and disease-causing capabilities, making them attractive targets for 

therapeutic intervention (Sanober, Ahmad et al. 2017) (Naz, Awan et al. 2015) 

3.4. Sub-cellular localization assessment  

Non-homologous essential proteins were subjected to further analysis based on their 

subcellular localization, a critical determinant for assessing their suitability as drug targets. At 

this stage, only those essential proteins identified as cytoplasmic were considered for further 

evaluation. A comprehensive analysis using the CELLO server predicted a total of 594 proteins 

to be cytoplasmic. To ensure the accuracy of these predictions, results were cross-verified with 

the PSORTb tool, which confirmed that all 594 proteins are indeed localized in the cytoplasm. 

The precise prediction of cellular localization is pivotal for elucidating protein functions, 
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understanding their roles in pathogenic processes, and developing targeted therapeutic 

strategies. Cytoplasmic proteins are generally more amenable to drug accessibility compared 

to membrane-bound counterparts, thus rendering them more advantageous as targets for novel 

drug development (Sanober, Ahmad et al. 2017). Membrane proteins are frequently implicated 

in energy-driven efflux systems and are known to pump a wide range of drugs. These systems 

utilize cellular energy to actively expel a variety of compounds, including antimicrobial agents, 

thereby contributing to multidrug resistance. The broad substrate specificity of these efflux 

pumps often complicates drug treatment regimens, as they can effectively reduce the 

intracellular concentrations of therapeutic agents, diminishing their efficacy (Ahmad, Raza et 

al. 2018) . Additionally, membrane proteins have lower permeation rate thus blocking access 

of the drug for the target protein. 

3.5. Virulence analysis  

Virulence analysis was performed using cytoplasmic proteins (Asad, Ahmad et al. 2018). 

Drugs designed to target the virulent mechanisms of a pathogen aim to address critical factors 

such as infection establishment, immune evasion, nutrient acquisition, and survival under 

hostile conditions. A BLASTp search against the Virulence Factor Database (VFDB) identified 

76 virulent proteins from an initial set of 594 cytoplasmic proteins. These shortlisted proteins 

represent optimal candidates for the development of anti-virulent compounds. Unlike 

traditional antibiotics, which kill or inhibit the growth of bacteria, anti-virulent compounds 

specifically disarm bacterial pathogens of their ability to cause disease, thereby reducing their 

virulence without necessarily affecting their viability (Knowles and Gromo 2003).  

 

 

3.6. Unique and common metabolic pathway analysis  

The combination of subtractive proteomics with metabolic pathway analysis proves to be a 

highly effective methodology for identifying proteins essential to the survival of a pathogen 

and exclusive to it. This integrative approach ensures the selection of targets that are not only 

critical for the pathogen’s viability but also specific to the pathogen, thereby minimizing 

potential off-target effects in therapeutic development (Uddin, Saeed et al. 2015). The essential 

cytoplasmic and virulent proteins were subjected to metabolic pathway analysis using the 
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KAAS (KEGG Automatic Annotation Server) tool. This analysis facilitated the identification 

and characterization of the specific metabolic pathways associated with these proteins, aiding 

in the understanding of their roles and relevance in the pathogen's physiology (Moriya, Itoh et 

al. 2007). Among the 76 proteins analyzed, 32 were identified as being involved in unique 

metabolic pathways specific to the pathogen. Of these, the majority—92%—are associated 

with more than one pathogen-specific metabolic pathway. Detailed information about these 

unique metabolic pathways is presented in Table 1. The remaining proteins were found to be 

part of common pathways shared with the host (human) and the pathogen. Proteins linked to 

unique pathways are considered the most promising drug targets due to their absence in the 

host's pathways, thereby reducing the likelihood of adverse side effects, as illustrated in Figure 

1. 

     Table 1. Unique Metabolic Pathway of E. tayi       

Protein ID Gene Name Protein Name Paathway ID Pathways 

A0A1E3A37

8 

  

glyA Serine 

hydroxymethyltransf

erase 

K00600 Glycine, serine and 

threonine 

metabolism/Cyano

amino acid 

metabolism/Biosy

nthesis of 

secondary 

metabolites/Antifo

late resistance 

A0A1E3A3

Y3 

carB_1 Carbamoyl 

phosphate synthase 

large chain 

K01948 
  

Metabolic 

pathway/Alanine, 

aspartate and 

glutamate 

metabolism/ 

Microbial 

metabolism in 
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diverse 

environments 

A0A1E3A5Z

9 

groL Chaperonin GroEL K04077 RNA 

degradation/Longe

vity regulating 

pathway – 

worm/Type I 

diabetes 

mellitus/Legionell

osis 

A0A1E3A9E

6 

ftsH_2 ATP-dependent zinc 

metalloprotease FtsH 

K08956 Spinocerebellar 

ataxia 

A0A1E3A9

G0 

pyrG CTP synthase K01937 Pyrimidine 

metabolism/Metab

olic 

pathways/Nucleoti

de 

metabolism/Biosy

nthesis of cofactors 

A0A1E3AJD

3 

pfkA_1 ATP-dependent 6-

phosphofructokinase 

K00850 Glycolysis / 

Gluconeogenesis/P

entose phosphate 

pathway/Fructose 

and mannose 

metabolism/ 

Galactose 

metabolism 

A0A1E3AJL

8 

adk Adenylate kinase K00939 Purine 

metabolism/Thiam

ine 
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metabolism/Metab

olic 

pathways/Biosynth

esis of secondary 

metabolites 

A0A1E2ZZI

6 

prmC Release factor 

glutamine 

methyltransferase 

K02493 Brite 

Hierarchies/Protei

n families: genetic 

information 

processing 

A0A1E2ZZZ

3 

purM_2 Phosphoribosylformy

lglycinamidine cyclo-

ligase 

K11787  Purine 

metabolism/Metab

olic pathways/ 

Biosynthesis of 

secondary 

metabolites 

A0A1E3A09

2 

rnc Ribonuclease 3 K03685 Ribosome 

biogenesis in 

eukaryotes/ 

Proteoglycans in 

cancer 

A0A1E3A13

0 

proC_2 Pyrroline-5-

carboxylate reductase 

K00286 Arginine and 

proline 

metabolism/Metab

olic 

pathways/Biosynth

esis of amino acids 

A0A1E3A1I

3 

glpK_3 Glycerol kinase K00864 Glycerolipid 

metabolism/Metab

olic 
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pathways/PPAR 

signaling pathway 

A0A1E3A1

K1 

metG_2 Methionine--tRNA 

ligase 

K01874 Selenocompound 

metabolism/Amino

acyl-tRNA 

biosynthesis/ 

Metabolic 

pathways 

A0A1E3A1

K5 

mro Aldose 1-epimerase K01785 Glycolysis / 

Gluconeogenesis/

Galactose 

metabolism/Micro

bial metabolism in 

diverse 

environments/ 

Metabolic 

pathways 

A0A1E3A1T

3 

nrdB Ribonucleoside-

diphosphate 

reductase subunit 

beta 

K10808 Purine 

metabolism/Pyrimi

dine metabolism/ 

Glutathione 

metabolism/p53 

signaling pathway 

A0A1E3A26

9 

pgk Phosphoglycerate 

kinase 

K00927 Purine 

metabolism/Pyrimi

dine 

metabolism/Glutat

hione 

metabolism/Metab

olic pathways 
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A0A1E3A2

D8 

ppnK NAD kinase K00858 Nicotinate and 

nicotinamide 

metabolism/Metab

olic 

pathways/Biosynth

esis of cofactors 

 

A0A1E3A2

H1 

nifS Cysteine desulfurase 

IscS 

K04487 Thiamine 

metabolism/Metab

olic 

pathways/Sulfur 

relay system 

A0A1E3A2

H7 

smc_2 Chromosome 

partition protein Smc 

K06674 Cell cycle - yeast 

A0A1E3A2I

1 

tpiA_2 Triosephosphate 

isomerase 

K01803 Glycolysis / 

Gluconeogenesis/F

ructose and 

mannose 

metabolism/Inosito

l phosphate 

metabolism/Metab

olic pathways  

A0A1E3A2L

9 

ffh Signal recognition 

particle protein 

K03106 Quorum 

sensing/Protein 

export/Bacterial 

secretion system 

A0A1E3A2

Q8 

mutS2_2 Endonuclease MutS2 K08740 Premature ovarian 

failure 
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A0A1E3A2

Q9 

gpsA Glycerol-3-phosphate 

dehydrogenase 

[NAD(P)+] 

K00006 Glycerophospholip

id 

metabolism/Biosy

nthesis of 

secondary 

metabolites/MAP

K signaling 

pathway - yeast 

A0A1E3A2T

2 

gpmA_2 2,3-

bisphosphoglycerate-

dependent 

phosphoglycerate 

mutase 

K01834 Glycolysis / 

Gluconeogenesis/ 

Glycine, serine and 

threonine 

metabolism/Metab

olic pathways 

A0A1E3A2

V0 

rpe Ribulose-phosphate 

3-epimerase 

K01783 Pentose phosphate 

pathway/Pentose 

and glucuronate 

interconversions/

Metabolic 

pathways 

A0A1E3A2

X2 

glyQS_2 Glycine--tRNA ligase K01880 Aminoacyl-tRNA 

biosynthesis 

A0A1E3A2

X3 

gap Glyceraldehyde-3-

phosphate 

dehydrogenase 

K10705 Glycolysis / 

Gluconeogenesis/

Metabolic 

pathways/Biosynth

esis of secondary 

metabolites 

A0A1E3A33

1 

argG Argininosuccinate 

synthase 

K01940 Arginine 

biosynthesis/ 
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Alanine, aspartate 

and glutamate 

metabolism/Metab

olic pathways 

A0A1E3A34

2 

argD Acetylornithine 

aminotransferase 

K00819 Arginine and 

proline 

metabolism/Metab

olic 

pathways/Biosynth

esis of secondary 

metabolites 

A0A1E3A3E

9 

purB Adenylosuccinate 

lyase 

K01756 Purine 

metabolism/ 

Alanine, aspartate 

and glutamate 

metabolism/ 

Metabolic 

pathways 

A0A1E3UI5

6 

adhE_2 Aldehyde 

dehydrogenase EutE 

K00129 Glycolysis / 

Gluconeogenesis/

Histidine 

metabolism/ 

Tyrosine 

metabolism/ 

Metabolic 

pathways 

A0A1E3A7

W3 

BEI61_05298 Putative multidrug 

export ATP-

binding/permease 

protein 

K05661 

 

Hereditary 

stomatocytosis/Mi

crophthalmia/ 

Familial 



 
 

612 
 

pseudohyperkalem

ia/Dyschromatosis 

universalis 

hereditaria 

 

3.7. Drugability potential  

The potential of a protein to bind to drug-like compounds, known as its "druggability potential," 

was assessed through alignment with DrugBank databases, which include FDA-approved 

drugs, experimental small molecules, nutraceuticals, and biotech drugs. To evaluate this 

potential, each drug target was compared to DrugBank entries by sequence similarity. For 

proteins involved in pathogen-specific pathways of E. tayi, druggability potential was 

determined based on this alignment. Notably, nine target proteins exhibited significant hits in 

regular sequence searches within the DrugBank database (Wishart, Feunang et al. 2018), The 

remaining 23 proteins were excluded at this stage. From the initial nine proteins that yielded 

hits, six were further shortlisted based on a bit score threshold exceeding 100. These six 

proteins were classified into drug groups, including FDA-approved, investigational, and 

experimental small molecule compounds, as detailed in Table 2. Additionally, the molecular 

weight of each potential drug target was analyzed using the Expasy Proparam tool to ensure 

comprehensive characterization (Gasteiger, Hoogland et al. 2005). A critical factor for 

selecting proteins in this study is that they should ideally have a molecular weight of less than 

110 kDa, which facilitates ease of purification and is preferred for experimental procedures. 

The identified druggable proteins fall within a molecular weight range of 11-63 kDa, indicating 

that these filtered proteins are well-suited for further experimentation in drug development 

studies. 

Table 2. Drugability potential of the six drugable targets. 

Gene Name Protein ID Drug Bank 

ID 

Drugban

k Targets 

Drug 

Group 

Molecular 

Weight  (kDa) 

carB_1 A0A1E3A

3Y3 

DB06775 Carglumic 

acid 

Approved 11.67 

https://go.drugbank.com/drugs/DB06775
https://go.drugbank.com/drugs/DB06775
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BEI61_052

98 

A0A1E3A

7W3 

DB00997 Doxirubici

n 

Approved 63.08 

argD A0A1E3A

342 

DB11638 Artenimol Approved,

Experiment

al 

44.60 

rpe A0A1E3A

2V0 

DB00153 Ergocalcif

erol 

Approved 23.88 

groL A0A1E3A

5Z9 

DB09130 Copper Approved 57.30 

purM_2 

 

A0A1E2Z

ZZ3 

DB00642 Pemetrexe

d 

Approved,I

nvestigatio

nal 

36.34 

 

3.8. Resistance analysis  

Druggable proteins were further prioritized based on their resistance profiles. An extensive 

literature review revealed that E. tayi exhibits resistance to various antibiotics, including 

ornithine, antenimol, pyridoxal phosphate, gabaculine, and canaline. A resistance assessment 

was performed for six candidate proteins. Among these, only acetylornithine aminotransferase 

(argD) demonstrated significant resistance to artenimol, with a sequence identity of 41% and a 

resistance score of 214. In contrast, the remaining proteins lack appropriate structural templates 

for accurate prediction, as detailed in the accompanying table.  

(Table 3), therefore, discouraged in the study.  

Table 3. Template search analysis for six potential drug targets. 

Protein 

ID 

Protein 

Name 

Numbe

r of 

Amino 

Acids 

Experimental 

Structure 

Availability 

Protein Data 

Bank Hit 

Templ

ate 

identi

ty 

Query 

Length 

A0A1E3

A3Y3 

Carbamoy

l 

phosphate 

1064      
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synthase 

large 

chain 

A0A1E3

A7W3 

Putative 

multidrug 

export 

ATP-

binding/pe

rmease 

protein 

576      

A0A1E3

A342 

Acetylorni

thine 

aminotran

sferase 

406  ✓ ✓ 41% 406 

A0A1E3

A2V0 

Ribulose-

phosphate 

3-

epimerase 

222      

A0A1E3

A5Z9 

Chaperoni

n GroEL 

540      

A0A1E2

ZZZ3 

Phosphori

bosylform

ylglycina

midine 

cyclo-

ligase 

341      

 

3.9. argD structure modelling  

The structural conformation of acetylornithine aminotransferase has been elucidated in various 

bacterial species and was subsequently utilized as a template for modeling the argD protein via 
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Phyre2 (Kelley, Mezulis et al. 2015). The three-dimensional conformation of Acetylornithine 

aminotransferase (argD) is illustrated in Figure 3. The protein, as characterized in the reference 

strain NML 110608, demonstrates a high degree of conservation across other sequenced 

proteomes of *E. tayi* (DSM26961, NML 120489, NML 150140-1). Of particular note, 

Acetylornithine aminotransferase (argD) uniquely produces a positive BLASTp match in 

searches against the Protein Data Bank (PDB). The process of target selection inherently 

involves the identification of a significant therapeutic entity, thereby accentuating the potential 

of argD as a pivotal candidate for targeted drug development  (Knowles and Gromo 2003). 

Accurate target identification necessitates a comprehensive understanding of the interplay 

between a pharmacological agent and its disease context, thereby facilitating an in-depth 

analysis of potential off-target effects and adverse reactions (Hughes, Rees et al. 2011). ArgD 

belongs to the arg8 protein family, wherein ARG8 encodes acetylornithine aminotransferase. 

This enzyme, located in the mitochondrial matrix, facilitates the fourth step in the biosynthetic 

pathway of ornithine (Jauniaux, Urrestarazu et al. 1978), an intermediate enzyme in the 

arginine biosynthetic pathway. Arg8p exhibits 68% amino acid sequence identity with the 

acetylornithine aminotransferase from Kluyveromyces lactis. Notably, the K. lactis*gene is 

capable of functionally complementing an S. cerevisiae arg8 mutant, underscoring the 

conservation and functional interchangeability of this enzyme across species. (Janssen and 

Chen 1998) . Arg8p is also similar to E. coli ArgD (Heimberg, Boyen et al. 1990). Similar to 

other genes involved in arginine biosynthesis, ARG8 is subject to transcriptional repression in 

the presence of arginine. Additionally, its expression is modulated by general amino acid 

control mechanisms, reflecting the integrated regulatory network governing amino acid 

metabolism (Lillywhite et al., 2013; Messenguy 1987).  

Argenine-responsive transcription factors—namely Arg80p, Arg81p, Arg82p, and Mcm1p—

along with their corresponding upstream activating sequences within the ARG8 gene, have 

been identified. The ARG8 sequence has been adapted to the mitochondrial genetic code, 

facilitating its use as a marker for mitochondrial transformation. A construct wherein the 

recoded ARG8 gene substitutes the COX3 coding sequence effectively complements a deletion 

of the nuclear ARG8 gene. This engineered construct necessitates the presence of COX3 

https://www.yeastgenome.org/locus/S000005500


 
 

616 
 

mRNA-specific translational activators for its expression, highlighting the intricate regulatory 

interplay required for functional restoration (Steele, Butler et al. 1996). 

 

 

 

Fig. 3 3D structure of argD. 

4. Conclusions 

The present investigation employs subtractive proteomics to elucidate prospective antibiotic 

targets within the proteome of E. tayi. This analytical approach identified a mere six proteins 

of interest: Carbamoyl phosphate synthase large chain, Putative multidrug export ATP-

binding/permease protein, Acetylornithine aminotransferase, Ribulose-phosphate 3-epimerase, 

Chaperonin GroEL, and Phosphoribosylformylglycinamidine cyclo-ligase. Among these, 

Acetylornithine aminotransferase (argD) was selected as the most viable candidate for drug 

targeting, primarily due to the availability of an experimental structural template. This protein 

is thus proposed for further investigation through molecular docking and molecular dynamics 

simulations to identify and characterize potential therapeutic agents. 
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